近几十年来,随着YL条件的提升、人均预期寿命增加,许多因身体条件变差而逐渐产生的“老年病”变得越来越常见。许多老年患者每天可能都需要服用多种药物,且药片的体积对于老年人而言不易吞咽。在2020年11月的推文《生物3D打印应用 | 打印高载药量速释片剂》中,我们介绍了Clive J. Roverts课题组如何使用生物3D打印提升载药量,从而减少药片体积,使其更易于吞咽。今天,我们将侧重于另一个方面,即如何克服同时服用多种药物的难题。
口服药片是所有药物当中最为常见也是最为方便的一种剂型。但口服药片往往通过批量生产完成,所以难以根据患者进行定制(与之相反,注射剂往往根据医生的CF由护士在现场进行配制,具有一定程度的灵活性,但需要定点给药、扎破皮肤,所以便利性不如口服药片)。因此,如果能将多种药物整合到一粒药片中,将大大减少服药患者的压力。
针对该问题,依然是Clive J. Roverts课题组,使用regenHU生物3D打印机技术,成功打印出复合活性成分片剂。这些活性成分并不是简单地混合在一起被压制成片剂,而是各自具有一个“舱室”,通过调整舱室外壁和药物本身的性质,就可以分别控制各个成分的释放速率。在文中,这项技术被称为聚合药片(Polypill)。通过3D打印技术制作这种新型的聚合药片,就可以实现真正的“个性化给药”。
图1:聚合药片的结构、作用示意图
在文中,作者使用硝苯地平(一种常见的降血压药物)、卡托普利(在文中作为降血压药物)、格列吡嗪(II型糖尿病降血糖药物)阐述“聚合药片”的设计。如图1所示,卡托普利在打印过程中被多孔膜材料包裹,服用后将以渗透的方式释放药物;硝苯地平与格列吡嗪则三边被包裹多孔膜包裹,另一面暴露在外,服用后将以溶出的方式释放药物。两层之间是顺滑的粘性材料,服用后将被溶解,使两层分离。两种释放方式均有缓释效应,因而三种药物在实验过程中,释放半衰期几乎都在14 h以上。
图2:聚合药片成品图
获得成品(图2)后,作者分别进行了扫描电镜、药物释放动力学等表征或检测。扫描电镜展示了多孔膜在溶出前后的变化(图3);药物释放动力学的模型匹配显示以渗透方式释放的卡托普利为零级反应,以溶出方式释放的硝苯地平与格列吡嗪则为一级反应。另外,课题组通过重量成分均一度检测3D打印方式是否能够保证批次内药片质量的稳定;通过红外光谱检测各舱室的成分,保证不同舱室间没有发生“污染”。
图3:药片中的多孔膜在溶出前(上两图)和
后(下两图)的表面SEM图像
文章中对于复合成分药片的制作方法无疑具有较大的积极作用。目前,如果一位老年患者同时患有高血压和糖尿病,可能不得不分别服用这三种药物。一天多次的频率、每次五六颗的药量都会让老年患者感到严重不适。但如果该聚合药片得以成熟商业化,患者的服药压力将会大大降低。
参考文献
[1] Khaled S A, Burley J C, Alexander M R, et al. 3D printing of tablets containing multiple drugs with defined release profiles[J]. International Journal of Pharmaceutics, 2015, 494(2): 643-650.
REGENHU生物3D打印机具有高精度、高稳定性、打印方式广泛、应用面广等特点,欢迎大家咨询!联系电话021-37827858 或 13818273779(微信同号)。
点击以下链接,查看往期回顾
生物3D打印应用 | 打印高载药量速释片剂
生物3D打印应用 | 构建体外肝毒性模型
生物3D器官打印——人工角膜
生物3D器官打印——肠道体外模型
生物3D器官打印——喉部软骨