3.3. Microbial mapping The intensity of resonance Raman spectra of Cyt c allows for integration times below one second. Microbial mapping of an area of 50×50 μm2 with a resolution of 500 nm/pixel (10,000 single spectra) can be perform... 3.3. Microbial mapping
The intensity of resonance Raman spectra of Cyt c allows for
integration times below one second. Microbial mapping of an
area of 50×50 μm2 with a resolution of 500 nm/pixel (10,000
single spectra) can be performed in less than 3 h. A further
reduction of the measuring duration by a factor of 10 can be
achieved by utilisation of an EMCCD camera (Coates et al.,
2004).
Microbial mapping was done on granules from two different
sequencing batch reactors (SBR) (Gaul et al., 2006). The SBRs
are used to analyse control parameters for the anaerobic
ammonium oxidation. Fig. 7 shows two different microbial
colonies in the same granulum. A graphical analysis of the
spectroscopic data at 750 cm-1 (dominant resonant Raman
band of Cyt c) and 2900 cm-1 (CH stretching mode)
differentiated the two colonies. One colony shows stronger
Raman signals at 750 cm-1 (blue frame). Whereas the other
microorganisms have more amount of methyl or methylene
groups (yellow frame).
After the graphical analysis above, an average spectrum was
constructed for each colony. The resulting averaged spectra
were transferred to our Raman database of wastewater bacteria
created by OPUS. The software recognized the microorganisms
Fig. 5. Time series of N. eutropha Nm 57 which is captured by optical tweezers.
Time difference between spectra: 1 s; Laser power: 9 mW. The bleaching effect
due to photo-dissociation caused by laser radiation is easy to see.
Fig. 6. The spectral heterogeneity of hierarchical clusteringis strongly dependent to the integration time. Bacteria from the same strain are only groupedtogether if the
exposure time was the same.
246 R. P?tzold et al. / Journal of Microbiological Methods 72 (2008) 241–248
in the left colony as anammox bacteria, those in the upper right
corner as Nitrosomonas.
3.3 。微生物测绘
强度的共振拉曼光谱的细胞色素C允许
一体化倍以下一秒。微生物绘制的
面积50 × 50平方微米,分辨率为500海里/像素( 10000
单谱)可以在不到3小时进一步
减少了测量时间由10个因素可
利用所取得的EMCCD相机(科茨等。 ,
2004年) 。
微生物进行测绘的颗粒从两个不同的
序批式反应器( SBR法) (高卢人等。 , 2006年) 。该SBRs
是用来控制参数分析的厌氧
氨氧化。图。 7显示两个不同的微生物
殖民地在同一granulum 。图形分析
光谱数据在750 cm - 1处(主要共振拉曼
带的细胞色素C )和2900 cm - 1处(甲烷拉伸模式)
有区别的两个殖民地。一个殖民地显示强劲
拉曼信号在750 cm - 1处(蓝框) 。而其他
微生物有更多的数额或甲基甲
团体(黄色框) 。
在图形分析以上,平均频谱
建造每个殖民地。由此产生的平均谱
被转移到我们的拉曼光谱数据库的废水细菌
创造的作品。该软件公认的微生物
图。 5 。时间序列北产碱杆菌牛57这是捕获光镊。
时间谱之间的区别: 1服务器;激光功率: 9毫瓦。漂白效果
由于光解离所造成的激光辐射很容易看到。
图。 6 。光谱异质性等级clusteringis强烈地依赖一体化的时间。细菌从同一菌株只是如果groupedtogether
曝光时间是一样的。
246河P ? tzold等。 /微生物学杂志72方法( 2008 ) 241-248
在左侧的殖民地作为厌氧氨氧化细菌,这些右上角
作为硝化角落。