仪器社区

钢铁材料的弹性模量和切变模量有什么区别?

甜兔瓶 2018-04-01
评论
全部评论
王静雯viki
材料在外力作用下发生变形。当外力较小时,产生弹性变形。弹性变形是可逆变形,卸载时,变形消失并恢复原状。在弹性变形范围内,其应力与应变之间保持线性函数关系,即服从虎克(Hooke)定律:
式中E为正弹性模量,G为切变模量。它们之间存在如下关系:
弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。在工程上,弹性模量则是材料刚度的度量。
实际上,理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等。
对非晶体,甚至对某些多晶体,在较小的应力时,可能会出现粘弹性现象。粘弹性变形是既与时间有关,又具有可恢复的弹性变形,即具有弹性和粘性变形量方面特征。粘弹性变形是高分子材料的重要力学特性之一。
当施加的应力超过弹性极限时,材料发生塑性变形,即产生不可逆的变形。通过塑性变形,不但可使材料获得预期的外形尺寸,而且可使材料内部组织和性能产生变化。
单晶体塑性变形的两个基本方式为滑移和孪生。滑移和孪生都是切应变,而且只有当外加切应力分量大于晶体的临界分切应力tC时才能开始。然而,滑移是不均匀切变,孪生为均匀切变。
对于多晶体而言,要求每个晶粒至少具备由5个独立的滑移系才能满足各晶粒在变形过程中相互制约和协调。多晶体中,在室温下晶界的存在对滑移起阻碍作用,而且实践证明,多晶体的强度随其晶粒细化而提高,可用的Hall-Petch公式来加以描述:
至于合金为单相固溶体时,由于溶质原子存在会呈现固溶强化效果,对某些材料还会出现屈服和应变时效现象;当合金为多相组织结构时,其变形还会受到第二相的影响,呈现弥散强化效果。
而陶瓷晶体,由于其结合键(离子键、共价键)的本性,再加上陶瓷晶体中的滑移系少,位错的b大,故其塑性变形相对金属材料要困难得多,只有以离子键为主的单晶陶瓷才能进行较大的塑性变形。对于高分子材料,其塑性变形是靠粘性流动而不是靠滑移产生的,故与材料粘度密切相关,而且受温度影响很大。
再结晶完成后继续加热时,晶粒将发生长大现象。
12 0 2018-04-01 0条评论 回复
您可能感兴趣的社区主题
加载中...
发布 评论