基因检测的方法不胜枚举,基本的步骤是样本的获取(包括血液、唾液、组织样本等)——处理(如DNA的提取与纯化、文库构建等)——序列测定——序列分析——结果解读——报告撰写。广泛应用的核酸序列测定方法是直接测序法,目前Z先进而且被广泛使用的方法和仪器有diyi代的Sanger测序法,第二代的高通量测序法(如美国Illumina公司的Hiseq测序仪和华大基因子公司CompleteGenomics开发的测序方法)等。目前也已出现被称为第三代测序技术的方法,如单分子实时DNA测序法。
diyi代:sanger测序
diyi代的Sanger测序技术的优点是,测序读长长,能达到800-1K bp,且测序用时短,只需要几十分钟即可完成一次测序,测序准确度高,目前仍是测序的金标准;缺点是通量低、成本高。
第二代:高通量测序(NGS)
第二代测序技术的优点是测序通量和效率高,成本低廉;缺点是测序读长普遍较短,且用时较长。以目前应用Z为广泛的测序仪之一的illumina公司Hiseq2000测序仪为例,其一次测序的数据产出量可达500
Gb,但读长为100 bp,且需要耗时14天左右。而Life technology公司的IonProton测序仪是边合成边通过反应体系电位的微小差别来测定碱基序列。
第三代:单分子/纳米孔测序
由于第二代技术存在短读长和耗时长的缺陷,人们希望第三代测序技术能解决这些缺陷,所以第三代测序技术在长读长和短耗时出发,目前尚未完全成熟,市场应用面还不算广,而且各种测序仪之间差异较大,测序原理也是各出奇招。如Pacific Bioscience公司则是通过在PCR合成DNA的过程中,用显微镜检测由荧光基团标记的dNTP反应后释放出的荧光来测序。而一直未投产的牛津大学研发的测序仪,则是通过检测由核酸外切酶剪切DNA时,“掉落”到检测微孔的核苷酸来测序。