仪器社区

初二物理题,急!!!!答案越好分数提得越高

上小楼夜听雨 2005-09-21
Z好20分钟内答题,悬赏分Z高为100分,答案写详细点,拜托~~~小妹我先谢了苏教版的,41页WWW第2,3题题目:2,在水里放些盐或糖,糖水和盐水的凝固点一样吗?为什么?设计实验寻找答... Z好20分钟内答题,悬赏分Z高为100分,答案写详细点,拜托~~~小妹我先谢了 苏教版的,41页WWW第2,3题 题目: 2,在水里放些盐或糖,糖水和盐水的凝固点一样吗?为什么?设计实验寻找答案 3,利用冰箱设计实验,研究水的凝固过程,并画出水的凝固图象 1楼的你可以告诉我你的资料是从哪转来的吗?感激不尽
评论
全部评论
lixiaoqian2571
MM,这才是你要的答案,生搬资料是没有用的。
希望这道题是我被采纳为答案的第100题~ ^^

2,在水里放些盐或糖,糖水和盐水的凝固点一样吗?为什么?设计实验寻找答案

3,利用冰箱设计实验,研究水的凝固过程,并画出水的凝固图象

2. 取等质量的盐和糖,分别加入两个相同的玻璃杯内,倒入相同的水使其溶解。(要保证盐和糖都全部溶解,这是为了让盐水和糖水的质量浓度一样,这样才有可比性)每个杯里放入一根温度计,将两个杯子放入冰箱里(Z好是透明门的冰箱),观察刚开始出现冰块时温度计的读数并记录,比较二者是否相同。

3.取一个玻璃杯倒入清水半杯,加入一枝温度计,放入冰箱(Z好透明门),每隔一分钟记录一次温度计的读数,在刚开始出现冰的时候和刚刚全部凝结成冰的可以分别追加记录一次,至全部结冰后一段时间停止记录。
画出温度和时间的曲线,并在曲线上注明每个时间段水各是什么状态(液态,固态还是两相共存(冰水混合物))。
14 0 2005-09-22 0条评论 回复
djb131455667
凝固点不一样
13 0 2005-09-22 0条评论 回复
boo_shit
二)材料准备与实验设计

1.实验材料准备

本节教学需要准备的材料有温度计、试管、酒精灯或无烟腊、铁架台等。

冰块、海波、峰蜡、松香等均由实验室统一制备。其中冰块由实验室用电冰箱统一制备,学生只需按设计要求制成碎冰即可使用。海波,化学名称“硫代硫酸钠”,分子式Na2S2O3 ,商用海波常为较大的晶粒,通常在试剂商店或照相器材商店有售。海波熔点为48℃,因含有杂质可略有不同。

顺便提及,以往教学中常选固态萘(熔点为80.5℃)作为研究熔化和凝固过程的实验器材,因为萘在加热过程中会放出有毒挥发物,现已废止。

2.实验设计

图5-2-1

(1)在用大苏打(硫代硫酸钠)做晶体熔化实验时,试管中晶体粉末不宜过多,只要全部熔化后仍能浸没温度计测温泡即可。实验中温度计测温泡不要和试管壁接触,为了使晶体粉末受热均匀,可在粉末中混一些碎的细铜丝,加热时应不断搅拌。为了缩短加热时间,不要用冷水,起始温度可高些(35~40℃之间),每隔l分钟记录l次温度,大苏打的熔点在47~49℃左右(由于总会含有杂质,一般不可能正好是48℃)。实验时,Z好用另一温度计测水温。如果环境温度太高,水温上升太快,会使大苏打熔化太快,画出熔化图线的平直部分太短。为了充分显示晶体熔化时温度不变的特性,加长曲线的平直部分,实验中当加热到大苏打开始熔化时,应适当减缓加热,甚至停止加热一会儿,让大苏打逐步从50~60℃的水中吸热熔化。从开始熔化到全部熔化大约持续4分钟左右温度不变,整个实验中约需记录12~15个数据,持续15分钟。纵轴起始温度应为35℃,所标温度范围35~60℃。

(2)探究冰的熔化规律:

用图5-2-1所示的学具装置也可以探究冰的熔化规律。注意观察状态变化过程,并且每隔10秒钟记录一次温度,直到全部熔化后再过2分钟为止。

(3)利用电冰箱研究水的凝固过程:

可安排为课外实践活动,意在对课堂教学中液体凝固类比结论的验证。

四、发展空间

(一)“自我评价”参考答案

1.0℃,BC段

2.非晶体

(二)“家庭实验室”指导

吊冰游戏:盐的熔点高于冰的熔点。冰上撒些盐,因盐的温度高于0℃,致使局部冰面熔化,盐溶化在水中吸热,使绳子周围冰面上熔化的冰重新凝固,故而几秒钟后就能用绳子把冰吊起来。

类似的,可做“复凝”游戏:将一块冰置于桌面上,把两端悬挂重锤的细线横置于冰块上表面,则可见细线缓慢切过冰块落至桌面,而冰块仍是“坚冰”一块,依稀还可找到细线“切豆腐”的痕迹,但“豆腐”重新又连成一片。这是利用冰在压力下熔点提高的特性实现的。

晶体花园:水在蒸发过程中吸热,将加速食盐水的凝固,由于瓦片放置和色素沉着,碗中各处食盐结晶析出的形状殊异,因而生成漂亮的“晶体花园”。

(三)“物理在线”和“走向社会”指导

太空材料:组织学生下载或去图书馆查找资料,走访专家学者,集中讨论以下问题:(1)什么是太空材料?(2)太空材料成本昂贵,为什么要制选太空材料?(3)你希望太空实验工厂制造什么新的材料?说说你的设想。

五、教学资源

(一)教学视频

1.晶体世界(见“教师备课系统”光盘)

2.火山(见“教师备课系统”光盘)

3.太空材料(见“教师备课系统”光盘)

(二)参考资料

1.温度计的发展

温度计是测温仪器的总称。依据所用测温物质的不同和测温范围的不同,有煤油温度计、酒精温度计、水银温度计、气体温度计、电阻温度计、温差电偶温度计、辐射温度计和光测温度计等。

世界上diyi支温度计是意大利科学家伽利略于1593年发明的。那时的温度计是一根一端敞口的玻璃管,另一端带有一个玻璃泡(如图5-2-2)。使用时先给玻璃泡加热,然后把玻璃管插入水中;测温时将玻璃球与不同温度的物体相接,由于管内空气的热胀冷缩,玻璃管 图5-2-2 伽利略发明的diyi支温度计

中的水面就会上下移动,根据移动的多少就可以判定温度的变化和温度的高低。这种温度计,受外界大气压强等环境因素的影响较大,所以测量误差大。后来伽利略的学生和其他科学家做了各种改进,其中比较突出的是法国人布利奥在1659年制造的温度计,他把玻璃泡的体积缩小,并把测温物质改为水银,这样的温度计已具备了现在温度计的雏形。之后德国人华伦海特在1709年利用酒精,在1714年又利用水银作为测量物质,制造了更精确的温度计。他观察了水的沸腾温度、水和冰混合时的温度、盐水和冰混合时的温度;经过反复实验与核准,Z后把一定浓度的盐水凝固时的温度定为0℉,把纯水凝固时的温度定为32℉,把标准大气压下水沸腾的温度定为212℉,用℉代表华氏温度,这就是华氏温度计。

在华氏温度计出现的同时,法国人列缪尔(1683-1757)也设计制造了一种温度计。他把冰点和沸点之间分成80份,定为自己温度计的温度分度,这就是列氏温度计。

1742年,瑞典人摄尔修斯改进了华伦海特温度计的刻度,他把水的沸点定为零度,把水的冰点定为100度。后来他的同事施勒默尔把两个温度点的数值又倒过来,就成了现在的百分温度,即摄氏温度,用℃表示。华氏温度与摄氏温度的换算关系可以表达为

℉=9/5℃+32,或℃=5/9(℉-32)。

1848年英国物理学家开尔文创立了开氏温标:也称热力学温标。热力学温标每一度的大小和摄氏温标完全相同,不过,它不是以水的冰点作为零度的,而是以理论上所说的分子热运动将完全停止时的温度,即-273.16℃作为零度,用K表示。要物质的热运动完全停止是不可能的,-273.16℃只不过是人们可以无限接近,但永远也不可能达到的温度。这一温度也叫做零度。

现在在说英语的国家,如英国、美国、加拿大、澳大利亚和印度等国,常用华氏温度;而世界科技界和工农业生产中,以及我国、法国等大多数国家则常用摄氏温度;在科学研究中,一般使用热力学温标。 (张计怀)

2.太空材料

1987年以来,我国多次利用返回式卫星搭载,进行空间材料加工试验,目前已取得较大进展。把需要合成的材料,放人特制的同一容器中,装进太空炉,随卫星一道送人太空,在太空通过太空炉,对材料进行加温,熔化,再降温,变成固体,合成出新的材料,然后伴随着返回式卫星,回到地球,由此加工出的材料,人们俗称它为太空材料。

1987年,我国在太空成功地制造出砷化镓晶体,当时在国际科技界引起高度重视。10年来,我国又先后利用返回式卫星,在空间试验加工出了碲镉汞、锑化铟、铅铝合金等数十种新型材料。

由于地面和空间环境有别,所以加工材料可利用的外界条件不同,空间实际上是人类所需要探索研究的新领域。铝和铅在地面的比重相差很大,铝轻铅重,即使把它们熔化变成液体状,Z后铅也要沉在容器的下面,铝则要浮在上面,二者实在是难以混合在一起。到了太空,基本克服了地球的引力,铝和铅就可非常容易地混合在一起。

根据同样的道理,如果我们在太空,把气泡加入到熔化后的金属中去,并使它们均匀分布,这样就有可能制造出比普通泡沫还轻的金属体。由于物体到了太空几乎没有轻重之分,所以能够比较容易地把不同比重的物质合成在一起,从而得到地面难以得到的更有价值的材料。用砷化镓制造出的微波晶体管,是卫星通讯和移动通讯性能优越的口和耳。在太空合成的高质量的碲镉汞单晶,用于制造红外探测器,则是、遥感卫星更为敏锐的眼睛。

人类在空间制造材料,目前还处在试验和起步阶段。今后随着有关学科和技术的进步,一定会得到更大发展,从而更加广泛地服务于国防和国民经济建设。

CCTV《科技博览》

3. 影响熔点的因素

熔点,实质上是该物质固、液两相可以共存并处于平衡的温度,以冰熔化成水为例,在一个大气压下冰的熔点是0℃,而温度为0℃时,冰和水可以共存,如果与外界没有热交换,冰和水共存的状态可以长期保持稳定.

物质的熔点并不是固定不变的,有两个因素对熔点影响很大.

(1)压强。平时所说的物质的熔点,通常是指一个大气压时的情况;如果压强变化,熔点也要发生变化。熔点随压强的变化有两种不同的情况.对于大多数物质,熔化过程是体积变大的过程,当压强增大时,这些物质的熔点要升高;对于像水这样的物质,与大多数物质不同,冰熔化成水的过程体积要缩小(金属铋、锑等也是如此),当压强增大时冰的熔点要降低。

如下两图中OL称为固液两相平衡曲线,又称为熔化曲线.该曲线的左方表示固相稳定存在的区域,右方一定的区域是液相稳定存在的区域,而线上的任一点,都代表固液两相平衡共存的状态。OL线表示了该物质的熔点随压强变化的规律。两图中OL线的斜率都很陡,说明物质的熔点随压强的变化很小,例如冰的熔点,每增加一个大气压,熔点才下降0.007 5℃,而要使冰的熔点下降1℃,则必须使压强增加1.75X107Pa,约为大气压的170倍。两个图的斜率的正或负,反映了两类物质随压强的增大,熔点升高或降低的规律。

图5-2-3

(2)溶有杂质。以上讨论的都是纯净的液态物质,如果液体中溶有少量其他物质,或称为杂质,即使数量很少,物质的熔点也会有很大的变化,例如水中溶有盐,熔点就会明显下降,海水就是溶有盐的水,海水冬天结冰的温度比河水低,就是这个原因.饱和食盐水的熔点可下降到约-220℃,北方的城市在冬天下大雪时,常常往公路的积雪上撒盐,只要这时的温度高于-22℃,足够的盐总可以使冰雪熔化.合金又称为固态溶液,因为合金在液态时也可以看做是一种金属溶于另一种金属之中的溶液,因此合金的熔点比单质低属熔点要低,而且比组成合金的每一种金属的熔点都低.例如锡的熔点是232℃,铅的熔点是327℃,按一定比例组成的铅锡合金的熔点则只有170℃,而由铋、锡、铅、镉组成的合金的熔点可降低到70℃,常应用来制作保险丝、焊丝等。
13 0 2005-09-22 0条评论 回复
您可能感兴趣的社区主题
加载中...
发布 评论