仪器社区

预焙阳极生坯冷却后温度偏高在焙烧装炉后会产生那些影响?

略尽冬春 2015-05-03
目前成型车间产量有限,输送过来的生坯温度偏高,有60度左右吧,焙烧车间为保证曲线的正常运行,急于装炉,然后用温度大约200度左右的填充料做为覆盖或层间。不知会对产品产生哪些影响?
评论
全部评论
赧晴
固相法是指纳米粉体是由固相原料制得,按其加工的工艺特点可分为机械粉碎法和固相反应法两类。 3.1.1机械粉碎法 机械粉碎法主要过程是将基质粉末与纳米粉体进行混合、球磨,然后烧结。普通粉碎法很难制得纳米粉体,但高能球磨能为固相反应提供巨大的驱动力。将高能球磨法和固相反应结合起来,则可通过颗粒间的反应直接合成纳米化合物粉体。如合成金属碳化物、氟化物、氮化物、金属一氧化物复合纳米粉体等。意大利的Matteazzi P和澳大利亚的Calka等人,在高能球磨法制备上述纳米陶瓷粉体方面做了大量研究工作。如在室温下、N2气氛中将铝粉进行高能球磨,则可得到纳米AlN粉[1]。 机械粉碎法存在一些问题,如粉体粒径控制较难,使得工业化生产有一定的困难,球磨本身不能完全破坏纳米颗粒之间的团聚,不能保证两相组成的均匀分散,以致球磨之后分散颗粒团聚、沉降造成进一步的不均匀。另外球磨及氧化等带来的污染也会降低纳米陶瓷粉体的纯度。如果在机械混合分散的基础上使用大功率超声波破坏团聚,调整体系的pH值使两种粉末悬浮颗粒的双电层结构具有静电稳定性,可使Z终的分散性有所改善。 3.2.2固相反应法 固相反应法又分为燃烧法和热分解法。燃烧法是指把金属盐或金属氧化物按配方充分混合,研磨后进行锻烧,发生固相反应后,直接得到纳米陶瓷粉体或再进行研磨得到纳米陶瓷粉体。例如现在常见的BaTiO3的制备方法之一就是将TiO2和BaCO3等摩尔混合后锻烧,发生固相反应,合成了BaTi03后再进行粉碎来获得纳米陶瓷粉[2]。热分解法则是利用金属化合物的热分解来制备纳米陶瓷材料。如草酸盐、碳酸盐热分解都可制得纳米氧化物。还可以加热分解金属与某些螯合剂(如柠檬酸、乳酸等)所形成的螯合物,制得高性能的纳米陶瓷粉体。 3.2液相法 液相法是目前广泛采用的制备纳米陶瓷粉体的方法,其基本过程原理是:选择一种或多种合适的可溶性金属盐类,按所制备的材料组成计量配制成溶液,再选择一种合适的沉淀剂或用蒸发、升华、水解等操作,使金属离子均匀沉淀或结晶出来,Z后将沉淀或结晶的脱水或者加热分解而得到纳米陶瓷粉体。 3.2.1沉淀法 沉淀法又分为直接沉淀法、共沉淀法和均匀沉淀法等,都是利用生成沉淀的液相反应来制取。共沉淀法可在制备过程中完成反应及掺杂过程,因此较多地应用于电子陶瓷的制备。BaTiO3是一种重要的电子陶瓷材料,具有高介电常数和优异的铁电和压电性能。用TiCl4,H2O2和BaCl2以共沉淀法制备过氧化钛前驱体,经无水乙醇分散脱水,热分解制备出颗粒直径小于30 nm的BaTi03纳米晶[3]。 3.2.2水热法 水热法是通过高温高压在水溶液或蒸汽中合成物质,再经分离和热处理得到纳米微粒。水热条件下离子反应和水解反应可以得到加速和促进,使一些在常温常压下反应速度很慢的热力学反应,在水热条件下可以快速进行。依据反应类型不同可分为:水热氧化、还原、沉淀、合成、水解、结晶等。利用超临界的水热合成装置,可连续地获得Fe203 ,钛TiO2, ZrO2, BaO?6Fe2O3, Ce02等一系列纳米氧化物粉体[4-5]。水热法比较适合氧化物材料合成和少数对水不敏感的硫化物的制备。 3.2.3溶胶一凝胶法 溶胶一凝胶法是利用金属醇盐的水解和聚合反应制备金属氧化物或金属氢氧化物的均匀溶胶,然后利用溶剂、催化剂、配合剂等将溶胶浓缩成透明凝胶,凝胶经干燥,热处理可得到所需纳米微粒。其中,控制溶胶凝胶化的主要参数有溶液的pH值、溶液浓度、反应温度和时间等。通过调节工艺条件,可以制备出粒径小、粒径分布窄的纳米微粉。采用溶胶一凝胶法工艺简单,可实现颗粒粒径的控制,制备出的纳米粉体纯度高,但成本相对较大。 3.2.4水解法 有很多化合物可用水解生成沉淀,其中有些还广泛用来合成纳米陶瓷粉体。水解反应的产物一般是氢氧化物或水合物。经过滤、干燥、焙烧等过程就可以得到氧化物纳米陶瓷粉体。 在制备纳米陶瓷粉体过程中,通常采用金属醇盐水解法。该法是将醇盐溶解于有机溶剂中,通过加人蒸馏水使醇盐水解、聚合,形成溶胶。溶胶形成后,随着水的加人转变为凝胶,凝胶在真空状态下低温干燥,得到疏松的干凝胶,再将干凝胶作高温燃烧处理,即可得到氧化物纳米陶瓷粉体。如Mazdiyashi等人利用此方法合成了粒径在5-15nm的精细BaTiO3纳米陶瓷粉末[6]。 3.3气相法 气相法是直接利用气体,或者通过各种手段将物质转变为气体,使之在气体状态下发生物理变化或者化学反应,Z后在冷却过程中凝聚长大形成纳米粒子的方法。用该法可制备纯度高、颗粒分散性好、粒径分布窄、粒径小的纳米陶瓷粉体。气相法又可分为气体中蒸发法、化学气相反应法、溅射源法、流动油面上真空沉积法和金属蒸汽合成法。 3.3.1气体中蒸发法 气体中蒸发法是在惰性气体(如He, Ar, Xe等)或活性气体(如O2,CH4,NH3等)中将金属、合金或化合物进行真空加热蒸发气化,然后在气体介质中冷凝而形成纳米陶瓷粉体。通过蒸发温度、气体种类和压力控制颗粒的大小,一般制得颗粒的粒径为10nm左右。其中蒸发源可用电阻加热、高频感应加热,对高熔点物质则可采用等离子体、激光和电子束加热等1987年美国的Argonne实验室的Sicgel等采用此法制备了平均粒径为12 nm的Ti02陶瓷粉体,而后该实验室还用该方法制备了粒径在4-8nm的ZrO2和中粒径为4 nm的Y203等纳米陶瓷粉体[7]。该方法适合制备熔点较低的粉体;对于高熔点的碳化物和氮化物等,则能量消耗太大,而且装置庞大、结构复杂,设备也较昂贵。 3.3.2化学气相反应法 化学气相反应法制备纳米微粒是利用挥发性的金属化合物的蒸汽,通过化学反应生成所需要的化合物,在保护气体环境下快速冷凝,从而制备各类物质的纳米微粒。该方法也叫化学气相沉积法(chemical vapor deposition,简称CVD)。 自上世纪80年代起,CVD技术逐渐用于粉状、快状材料和纤维等的合成,成功制备了SiC, Si304和AlN等多种超细颗粒[8]。Z初的CVD反应器是由电炉加热,这种热CVD技术虽可合成一些材料的超细颗粒,但由于反应器内温度梯度小,合成的粒子不但粒度大,而且易团聚和烧结,这也是热CVD合成纳米颗粒的Z大局限。在此基础上,人们又开发了多种制备技术,如等离子体CVD法、激光CVD法等等。 3.3.3溅射源法 溅射源法用两块金属板作为阳极和阴极,阴极为蒸发用的材料,在两电极间充人惰性气体Ar(40-250 Pa),两电极间施加的电压范围为(0-31.5V)。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原子从表面蒸发出来形成超微粒子,并在附着面上沉积下来。粒子的大小及尺寸分布主要取决于两电极间的电压、电流和气体的压力。靶材的面积愈大,原子的蒸发速度愈高,纳米陶瓷粉体的获得量就愈多[9]。商用磁控溅射装置可用来制备7-50 nm直径的纳米陶瓷分子团,己用磁控溅射研究了TiO2, Zr02等陶瓷纳米品的生成。 3.3.4流动油面上真空沉积法 流动油面上真空沉积法(VEROS法)的原理是在高真空中将原料用电子束加热蒸发,让蒸发物沉积到旋转圆盘的下表面的流动油面,在油中蒸发原子结合形成纳米陶瓷粉体[10]。其优点是,平均粒径很小,为3nm左右,而且粒度很整齐,另外,纳米陶瓷粉体一形成就在油中分散,处于孤立状态。其缺点是,生成的纳米陶瓷粉体与油较难分离,且产率低。 总的说来气相法所得的纳米陶瓷粉体纯度高、团聚较少、烧结性能也往往较好但设备昂贵、产量较低、不易普及;固相法所用设备简单、操作方便,但所得粉体往往不够纯,粒度分布也较大,适用于要求比较低的场合;液相法介于气相法与固相法之间,与气相法相比,液相法具有设备简单、无需真空等苛刻物理条件、易放大等优点,同时又比固相法制得的粉体纯净、团聚少,很容易实现工业化生产,因此很有发展前途。 4纳米陶瓷的热力学特性 4.1纳米陶瓷的烧结 4.1.1烧结温度的变化 纳米陶瓷粉体的烧结温度较低。研究表明,无团聚的含ZrO2纳米粉体(颗粒尺寸为10-20nm)在1200℃时.即可烧结到理论密度的95%,且升温速率可达500℃/min.保温时间仅需2min,而微米级时烧结温度为1650℃左右。文献 [l4]通过对Y-TZP纳米份体烧结初期动力学过程的研究,提出了晶界扩散是烧结初期导致收缩的主导因素并推导出如下烧结动力学方程: 其中为晶界扩散系数;Ω为空位体积;R为颗粒半径;k为波尔兹曼常致;T为烧结温度;t烧结时间。实验表明:对于无团聚体的超细粉体,烧结初期素坯收缩量与烧结时间成线性关系。 4.1.2烧结动力学 超微粉体的巨大比表面,意味着作为粉体烧结的驱动力的表面能剧增,引起扩散速率增加,更兼扩散路径变小.在有化学反应参与的烧结过程中,颗粒接触表面增加,增加反应的机率,加快了反应速率;这些均引起烧结活化能变小,使整个烧结的速率加快,烧结温度变低,烧结时间变短.但是整个烧结过程中的晶粒长大亦即重结晶过程亦会加速,而烧结温度的降低和时间的缩短,会使重结晶过程减缓.这些相互促进和制约因素的作用,有必要加以重新认识和研究,以确立适应于超微颗粒烧结的动力学. 4.2纳米陶瓷的力学性能 4.2.1力学性能的改善 研究表明在材料基体中引入纳米分散相进行复合,可使材料的力学性能得到极大的改善。主要表现为大幅度提高了断裂强度及断裂韧性,材料的耐高温性能得到了明显的改善。图1为A1203/SiC纳米复合材料中SiC含量对复合陶瓷强度和韧性的影响[11]。图2表示Si3N4/SiC复合陶瓷强度和断裂韧性随纳米SiC含量的变化[12]。 图1 SiC含量对强度和韧性 的影响(A1203/SiC系统) SiC(体积分数,下同)%<25%时均可使力学性能得到改善,同时材料的硬度、弹性模量和抗热震、抗高温性能均得到提高。新原皓一等在Si3N4纳米粒子中掺入25 % SiC纳米粒子,可将Si3N4纳米陶瓷的断裂韧性从4.5MPa?m1/2提高到6.5 MPa?m1/2,强度从850 MPa增加到1550MPa[16]。 4.2.2超塑性 超塑性是指在应力作用下产生异常大的拉伸形变而不发生破坏的能力。陶瓷材料是具有方向性的离子键和共价键的过渡键型,位错密度小,晶界难以滑移,使得陶瓷硬度大,脆性高,普通陶瓷材料在常温下几乎不产生塑性形变。只有当温度达到1000℃以上,晶质与晶界的热运动加速,陶瓷才具有一定的塑性。 Z近研究发现,随着粒径的减少,纳米Ti02和Zn0陶瓷的形变率敏感度明显提高,主要是试样中气孔减少,可以认为这种趋势是细晶陶瓷所固有的。Z细晶粒处的形变率敏感度大约为0. 04,表明这些陶瓷具有延展性,尽管没有表现出室温超塑性,但随着晶粒的进一步减小,这一可能是存在的。通过原子力显微镜发现纳米3Y -T7P陶瓷( 100nm左右)在经室温循环拉伸实验后,其样品的断口区域发生了局部超塑性形变,并从断口侧面观察到了大量通常出现在金属断口的滑移线。 4.2.3强化增韧机理 一般认为陶瓷具有超塑性应该具有两个条件:(1)较小的粒径;(2)快速的扩散途径(增强的晶格、晶界扩散能力)。目前已知的强化增韧机理大致可分为5种类型:弥散增韧、裂纹增韧、延性相增韧、陶瓷显微(晶须)增韧及相变增韧。根据新原皓一的研究[14],认为纳米复合陶瓷的强化增韧主要通过以下几种效应得以实现:1)弥散相可有效YZ基质晶粒的生长及异常长大;2)存在于弥散相或弥散相周围的局部应力,是由基体与弥散相之间膨胀失配而产生,并在冷却阶段产生位错,纳米粒子钉扎或进入位错区使基体晶粒内产生潜晶界,晶粒发生细化而减弱了主晶界的作用;3)纳米级粒子周围的局部拉伸应力诱发穿晶断裂,并由于A1203硬粒子对裂纹的反射作用而产生韧化;4)纳米粒子高温牵制位错运动,使高温力学性能如硬度、强度及抗蠕变性能得到改善。研究[15]通过对A1203/SiC纳米复合材料热压合成实验后认为:晶内粒子对裂纹的偏析和微裂纹及加工引起的压缩表面应力都不是强化增韧的主要机理;断裂模式的改变,即从纯基体的沿晶断裂至复合材料的穿晶断裂,可能是使材料韧性增强的主要原因,穿晶断裂的发生与结构中存在的纳米化效应有关。
18 0 2015-05-04 0条评论 回复
您可能感兴趣的社区主题
加载中...
发布 评论