MOCVD金属有机化合物化学气相沉积
MOCVD金属有机化合物化学气相沉积
一、MOCVD简述:
MOCVD全称是Metal-Organic Chemical Vapour Deposition(金属有机化合物化学气相沉积设备),是在气相外延(VPE)的基础上发展起来的一种新型气相外延生长技术,是利用金属有机化合物作为源物质的一种化学气相淀积(CVD)工艺。利用MOCVD技术,许多纳米层可以以极高的精度沉积,每一层都具有可控的厚度,以形成具有特定光学和电学特性的材料。MOCVD是用于LED芯片和功率器件制造的关键工艺技术,用于在蓝宝石(Al2O3)衬底上外延生长,制作外延片。
MOCVD(金属有机化合物化学气相沉积)是用于在半导体晶圆上沉积超薄单晶体层。MOCVD对于半导体III-V化合物是Z重要的制造工艺,尤其是这些基于氮化镓的半导体。广泛应用于包括半导体器件、光学器件、气敏元件、超导薄膜材料、铁电/铁磁薄膜、高介电材料等多种薄膜材料的制备。
MOCVD技术始于20世纪50年代中期,由于早期的HVPE控制技术不佳(HVPE英文全称为Hydride vapor-phase epitaxy,中文意思是氢化物气相外延),不能制造量子阱,超晶格等结构的生长,在80年代逐渐被MOCVD技术所取代。
目前主要有三种途径生产外延片,HVPE,MBE和MOCVD。对比于前面提到的HVPE和MOCVD,MBE很难运用到商业化生产中(MBE英文全称为Molecular-beam epitaxy,中文意思是分子束外延),首先MBE生长速度缓慢导致外延片生长周期长,产能低,其次MBE维护成本高。在这三种生产途径中,MOCVD占主流技术路线。
二、MOCVD的工作原理:
MOCVD是以Ⅲ族、Ⅱ族元素的有机化合物和V、Ⅵ族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底上进行气相外延,生长各种Ⅲ-V族、Ⅱ-Ⅵ族化合物半导体以及它们的多元固溶体的薄层单晶材料。
一般而言,载流气体通常是氢气 ,但是也有些特殊情况下采用氮气(例如:成长 氮化铟镓 (InGaN)薄膜时)。常用的基板为砷化镓(GaAs)、磷化镓 (GaP)、磷化铟(InP)、硅(Si)、 碳化硅(SiC)及蓝宝石(Sapphire,Al2O3)等等。而通常所成长的薄膜材料主要为三五族化合物半导体(例如:砷化镓(GaAs)、砷化镓铝(AlGaAs)、磷化铝铟镓(AlGaInP)、氮化铟镓(InGaN))或是二六族化合物半导体 ,这些半导体薄膜则是应用在光电元件(例如: 发光二极体(LED)、雷射二极体(Laser diode)及太阳能电池)及微电子元件(例如: 异质接面双载子电晶体(HBT)及 假晶式高电子迁移率电晶体(PHEMT))的制作。
通常MOCVD系统中的晶体生长都是在常压或低压(10-100Torr)下通H2的冷壁石英(不锈钢)反应室中进行,衬底温度为500-1200℃,用直流加热石墨基座(衬底基片在石墨基座上方),H2通过温度可控的液体源鼓泡携带金属有机物到生长区。
三、MOCVD的优劣势:
(1)用于生长化合物半导体材料的各组分和掺杂剂都是以气态的方式通入反应室,因此,可以通过精确控制气态源的流量和通断时间来控制外延层的组分、掺杂浓度、厚度等。可以用于生长薄层和超薄层材料。
(2)反应室中气体流速较快。因此,在需要改变多元化合物的组分和掺杂浓度时,可以迅速进行改变,减小记忆效应发生的可能性。这有利于获得陡峭的界面,适于进行异质结构和超晶格、量子阱材料的生长。
(3)晶体生长是以热解化学反应的方式进行的,是单温区外延生长。只要控制好反应源气流和温度分布的均匀性,就可以保证外延材料的均匀性。因此,适于多片和大片的外延生长,便于工业化大批量生产。
(4)通常情况下,晶体生长速率与Ⅲ族源的流量成正比,因此,生长速率调节范围较广。较快的生长速率适用于批量生长。
(5)使用较灵活。原则上只要能够选择合适的原材料就可以进行包含该元素的材料的MOCVD生长。而可供选择作为反应源的金属有机化合物种类较多,性质也有一定的差别。
MOCVD技术的主要缺点大部分均与其所采用的反应源有关。首先是所采用的金属有机化合物和氢化物源价格较为昂贵,其次是由于部分源易燃易爆或者有毒,因此有一定的危险性,并且,反应后产物需要进行无害化处理,以避免造成环境污染。另外,由于所采用的源中包含其他元素(如C,H等),需要对反应过程进行仔细控制以避免引入非故意掺杂的杂质。
四、MOCVD设备的构造:
一台MOCVD生长设备可以简要地分为以下的4个部分
(1)气体操作系统:
气体操作系统包括控制Ⅲ族金属有机源和V族氢化物源的气流及其混合物所采用的所有的阀门、泵以及各种设备和管路。其中,Z重要的是对通入反应室进行反应的原材料的量进行精确控制的部分。主要包括对流量进行控制的质量流量控制计(MFC),对压力进行控制的压力控制器(PC)和对金属有机源实现温度控制的水浴恒温槽(Thor·mal Bath)。
(2)反应室:
反应室是MOCVD生长系统的核心组成部分,反应室的设计对生长的效果有至关重要的影响。不同的MOCVD设备的生产厂家对反应室的设计也有所不同。但是,Z终的目的是相同的,即避免在反应室中出现离壁射流和湍流的存在,保证只存在层流,从而实现在反应室内的气流和温度的均匀分布,有利于大面积均匀生长。
(3)加热系统:
MOCVD系统中衬底的加热方式主要有三种:射频加热,红外辐射加热和电阻加热。在射频加热方式中,石墨的基座被射频线圈通过诱导耦合加热。这种加热形式在大型的反应室中经常采用,但是通常系统过于复杂。为了避免系统的复杂性,在稍小的反应室中,通常采用红外辐射加热方式。卤钨灯产生的热能被转化为红外辐射能,石墨的基座吸收这种辐射能并将其转化回热能。在电阻加热方式中,热能是由通过金属基座中的电流流动来提供的。
(4)尾气处理系统:
由于MOCVD系统中所采用的大多数源均易燃易爆,其中的氢化物源又有剧毒,因此,必须对反应过后的尾气进行处理。通常采用的处理方式是将尾气先通过微粒过滤器去除其中的微粒(如P等)后,再将其通入气体洗涤器(Scrubber)采用特殊溶液进行反应。另外一种去除的方式是采用燃烧室。在燃烧室中包括一个高温炉,可以在900~1 000℃下,将尾气中的物质进行热解和氧化,从而实现无害化。反应生成的产物被淀积在石英管的内壁上,可以很容易去除。
五、MOCVD常见应用:
1、Green LED’s (GaN, InGaN, AlGaN, ...)
2、III到V族半导体层
3、蓝色发光二极管
4、激光二极管
5、紫外-可见光谱光电中的氮化铟纳米棒
6、3D或2D材料中的二硫化钼、氮化硼、石墨烯
相关产品
全部评论(0条)
推荐阅读
-
- 科研之星——阿拉丁合成有机化合物配体
- 阿拉丁合成有机化合物配体,精准合成,高效稳定。适用于多种化学反应,提升实验效率,确保结果可靠性。
-
- 金属层表面处理工艺-化学镍金
- 扫描电镜作为材料微观结构表征的利器,已经成为PCB制造商必不可少的分析工具。
-
- 全氟化合物(PFCs) | 持久性有机污染物的"顽疾"
- 全氟化合物(PFCs) | 持久性有机污染物的"顽疾"
-
- 暨南大学陆伟刚、李丹团队JACS:超稳定金属有机框架光催化
- 异相光催化剂表面的电荷转移决定了活性氧物种(ROS)的生成效率,从而影响了催化需氧型反应的效率。金属-有机框架(MOFs)中的网状化学允许合理设计给体-受体以优化界面电荷转移动力学。
-
- Nature Communications – 晶格畸变增强高熵金属间化合物合金的强度和塑性
- 高熵金属间化合物合金与传统高熵合金不同,它从现有的金属间化合物出发,利用多种元素对金属间化合物的亚晶格进行多主元化,并逐渐形成一种具有长程有序结构的新型高熵材料。
-
- 热点应用丨SCION赛里安 8500GC-8700SQ测定生活饮用水中55种挥发性有机化合物
- 赛里安气质联用仪搭配全自动固液一体吹扫捕集仪对生活饮用水中55种挥发性有机物(VOC)进行测试,方法具有灵敏度高,重复性好,线性好。该方法完全满足于新国标GB/T 5750-2023生活饮用水中55种挥发性有机物(VOC) 检验方法
-
- Angew. Chem. :利用互锁策略构建孔分割金属有机框架用于高效纯化乙炔
- 近日,西北大学的杨国平教授、王尧宇教授和三峡大学的李东升教授合作,首次采用“2D→3D互锁”策略成功构建了一种新型的PSP MOF材料Ni-dcpp-bpy。其通过主体框架互锁实现了孔径优化,同时在孔表面成功引入了功能N/O位点
-
- 超级活性可再生碳 (SARC) 对低碳复合材料 (LCC) 中挥发性有机化合物 (VOC) 吸附的影响
- 这是首次研究挥发性有机化合物 (VOCs) 吸附在超级活性可再生炭 (SARC) 上,以最大限度地去除低碳复合材料 (LCC) 复合过程中的气味。通过对椰子壳衍生的可再生碳进行碱 (NaOH) 改性制备了三种不同尺寸的 SARC
-
- Nature Communications:具有增强高温电容储能性能的金属有机笼交联纳米复合材料
- 来自清华大学和华南理工大学的科学家们通过具有氨基反应位点的自组装金属有机笼(NH2-TOC)掺入聚醚酰亚胺(PEI)基体中,合成了金属有机笼交联纳米复合材料(PEI-g-TOC)
①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。
②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。
③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi
参与评论
登录后参与评论