北京北广精仪仪器设备有限公司
北京北广精仪仪器设备有限公司

镀膜介电常数介损测试仪

镀膜介电常数介损测试仪技术参数:

1.Q值测量
a.Q值测量范围:2~1023。
b.Q值量程分档:30、100、300、1000、自动换档或手动换档。
c.标称误差
频率范围(100kHz~10MHz): 频率范围(10MHz~160MHz):
固有误差:≤5%±满度值的2% 固有误差:≤6%±满度值的2%
工作误差:≤7%±满度值的2% 工作误差:≤8%±满度值的2%
2.电感测量范围:4.5nH~7.9mH
3.电容测量:1~205
主电容调节范围:18~220pF
准确度:150pF以下±1.5pF; 150pF以上±1%
注:大于直接测量范围的电容测量见后页使用说明
4.  信号源频率覆盖范围
频率范围CH1:0.1~0.999999MHz, CH2: 1~9.99999MHz,
CH3:10~99.9999MHz, CH1 :100~160MHz,
5.Q合格指示预置功能:      预置范围:5~1000。
6.B-测试仪正常工作条件
a.  环境温度:0℃~+40℃;
b.相对湿度:<80%;
c.电源:220V±22V,50Hz±2.5Hz。
7.其他
a.消耗功率:约25W;
b.净重:约7kg;
c. 外型尺寸:(l×b×h)mm:380×132×280。

1  测量范围及误差

 本电桥的环境温度为20±5℃,相对湿度为30%-80%条件下,应满足下列表中的技术指示要求。

  在Cn=100pF    R4=3183.2(W)(即10K/π)时

    测量项目       测量范围             测量误差               

    电容量Cx       40pF--20000pF      ±0.5%  Cx±2pF     

    介质损耗tgd      0~1              ±1.5%tgdx±0.0001

    在Cn=100pF      R4=318.3(W)(即1K/π)时

    测量项目       测量范围             测量误差               

    电容量Cx       4pF--2000pF      ±0.5%  Cx±3pF     

    介质损耗tgd      0~0.1          ±1.5%tgdx±0.0001

2  电桥测量灵敏度

    电桥在使用过程中,灵敏度直接影响电桥平衡的分辨程度,为保证测量准确度,希望电桥灵敏度达到一定的水平。通常情况下电桥灵敏度与测量电压,标准电容量成正比。在下面的计算公式中,用户可根据实际使用情况估算出电桥灵敏度水平,在这个水平上的电容与介质损耗因数的微小变化都能够反应出来。

 DC/C或Dtgd=Ig/UwCn(1+Rg/R4+Cn/Cx)   

         式中:U为测量电压                     伏特(V)

ω为角频率 2pf=314(50Hz)                            

          Cn标准电容器容量                    皮法(pF)

          Ig通用指另仪的电流5X10-10            安培(A)

          Rg平衡指另仪内阻约1500              欧姆(W)

          R4桥臂R4电阻值3183                 欧姆(W)

          Cx被测试品电容值                    皮法(pF)

3 电容量及介损显示精度:

    电容量: ±0.5%×tgδx±0.0001。

    介  损: ±0.5%tgdx±1×10-4

4 辅桥的技术特性:

    工作电压±12V,50Hz

    输入阻抗>1012 W

    输出阻抗>0.6 W

    放大倍数>0.99

    不失真跟踪电压  0~12V(有效值)

5 指另装置的技术特性:

    工作电压±12V

    在50Hz时电压灵敏度不低于1X10-6V/格, 电流灵敏度不低于2X10-9A/格

    二次谐波  减不小于25db

    三次谐波  减不小于50db

特点:优化的测试电路设计使残值更小◆ 高频信号采用数码调谐器和频率锁定技术◆ LED 数字读出品质因数,手动/自动量程切换◆ 自动扫描被测件谐振点,标频单键设置和锁定,大大提高测试速度

作为新一代的通用、多用途、多量程的阻抗测试仪器,测试频率上限达到目前国内高的160MHz。1 双扫描技术 - 测试频率和调谐电容的双扫描、自动调谐搜索功能。2 双测试要素输入 - 测试频率及调谐电容值皆可通过数字按键输入。3 双数码化调谐 - 数码化频率调谐,数码化电容调谐。4 自动化测量技术 -对测试件实施 Q 值、谐振点频率和电容的自动测量。5 全参数液晶显示 – 数字显示主调电容、电感、 Q 值、信号源频率、谐振指针。6 DDS 数字直接合成的信号源 -确保信源的高葆真,频率的高精确、幅度的高稳定。7 计算机自动修正技术和测试回路优化 —使测试回路 残余电感减至低,彻底 Q 读数值在不同频率时要加以修正的困惑。

标准配置:高配Q表 一只  试验电极  一只 (c类)电感      一套(9只)电源线    一条说明书    一份合格证    一份保修卡    一份

为什么介电常数越大,绝缘能力越强?因为物质的介电常数和频率相关,通常称为介电系数。

介电常数又叫介质常数,介电系数或电容率,它是表示绝缘能力特性的一个系数。所以理论上来说,介电常数越大,绝缘性能就越好。

注:这个性质不是成立的。

对于绝缘性不太好的材料(就是说不击穿的情况下,也可以有一定的导电性)和绝缘性很好的材料比较,这个结论是成立的。

但对于两个绝缘体就不一定了。

介电常数反映的是材料中电子的局域(local)特性,导电性是电子的全局(global)特征.不是一回事情的。

补充:电介质经常是绝缘体。其例子包括瓷器(陶器),云母,玻璃,塑料,和各种金属氧化物。有些液体和气体可以作为好的电介质材料。干空气是良好的电介质,并被用在可变电容器以及某些类型的传输线。蒸馏水如果保持没有杂质的话是好的电介质,其相对介电常数约为80。

对于时变电磁场,物质的介电常数和频率相关,通常称为介电系数。介电常数又叫介质常数,介电系数或电容率,它是表示绝缘能力特性的一个系数介电常数,用于衡量绝缘体储存电能的性能.它是两块金属板之间以绝缘材料为介质时的电容量与同样的两块板之间以空气为介质或真空时的电容量之比。介电常数代表了电介质的极化程度,也就是对电荷的束缚能力,介电常数越大,对电荷的束缚能力越强。电容器两极板之间填充的介质对电容的容量有影响,而同一种介质的影响是相同的,介质不同,介电常数不同

介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角δ称为介质损耗角。

损耗因子也指耗损正切,是交流电被转化为热能的介电损耗(耗散的能量)的量度,一般情况下都期望耗损因子低些好。

概念:

电介质在外电场作用下,其内部会有发热现象,这说明有部分电能已转化为热能耗散掉,电介质在电场作用下,在单位时间内因发热而消耗的能量称为电介质的损耗功率,或简称介质损耗(diclectric loss)。介质损耗是应用于交流电场中电介质的重要品质指标之一。介质损耗不但消耗了电能,而且使元件发热影响其正常工作。如果介电损耗较大,甚至会引起介质的过热而绝缘破坏,所以从这种意义上讲,介质损耗越小越好。

形式

各种不同形式的损耗是综合起作用的。由于介质损耗的原因是多方面的,所以介质损耗的形式也是多种多样的。介电损耗主要有以下形式:

1)漏导损耗

实际使用中的绝缘材料都不是完善的理想的电介质,在外电场的作用下,总有一些带电粒子会发生移动而引起微弱的电流,这种微小电流称为漏导电流,漏导电流流经介质时使介质发热而损耗了电能。这种因电导而引起的介质损耗称为“漏导损耗”。由于实阿的电介质总存在一些缺陷,或多或少存在一些带电粒子或空位,因此介质不论在直流电场或交变电场作用下都会发生漏导损耗。

2)极化损耗

在介质发生缓慢极化时(松弛极化、空间电荷极化等),带电粒子在电场力的影响下因克服热运动而引起的能量损耗。

  一些介质在电场极化时也会产生损耗,这种损耗一般称极化损耗。位移极化从建立极化到其稳定所需时间很短(约为10-16~10-12s),这在无线电频率(5×1012Hz 以下)范围均可认为是极短的,因此基本上不消耗能量。其他缓慢极化(例如松弛极化、空间电荷极化等)在外电场作用下,需经过较长时间(10-10s或更长)才达到稳定状态,因此会引起能量的损耗。

若外加频率较低,介质中所有的极化都能完全跟上外电场变化,则不产生极化损耗。若外加频率较高时,介质中的极化跟不上外电场变化,于是产生极化损耗。

电离损耗

电离损耗(又称游离损耗)是由气体引起的,含有气孔的固体介质在外加电场强度超过气孔气体电离所需要的电场强度时,由于气体的电离吸收能量而造成指耗,这种损耗称为电离损耗。

结构损耗

在高频电场和低温下,有一类与介质内邻结构的紧密度密切相关的介质损耗称为结构损耗。这类损耗与温度关系不大,耗功随频率升高而增大。

试验表明结构紧密的晶体成玻璃体的结构损耗都很小,但是当某此原因(如杂质的掺入、试样经淬火急冷的热处理等)使它的内部结构松散后。其结构耗就会大大升高。

宏观结构不均勾性的介质损耗

工程介质材料大多数是不均匀介质。例如陶瓷材料就是如此,它通常包含有晶相、玻璃相和气相,各相在介质中是统计分布口。由于各相的介电性不同,有可能在两相间积聚了较多的自由电荷使介质的电场分布不均匀,造成局部有较高的电场强度而引起了较高的损耗。但作为电介质整体来看,整个电介质的介质损耗必然介于损耗大的一相和损耗小的一相之间。

表征:

电介质在恒定电场作用下,介质损耗的功率为

  W=U2/R=(Ed)2S/ρd=σE2Sd

定义单位体积的介质损耗为介质损耗率为

ω=σE2

在交变电场作用下,电位移D与电场强度E均变为复数矢量,此时介电常数也变成复数,其虚部就表示了电介质中能量损耗的大小。

D,E,J之间的相位关系图

D,E,J之间的相位关系图

如图所示,从电路观点来看,电介质中的电流密度为

J=dD/dt=d(εE)/dt=Jτ+iJe

式中Jτ与E同相位。称为有功电流密度,导致能量损耗;Je,相比较E超前90°,称为无功电流密度。

定义

tanδ=Jτ/Je=ε〞/εˊ

式中,δ称为损耗角,tanδ称为损耗角正切值。

损耗角正切表示为获得给定的存储电荷要消耗的能量的大小,是电介质作为绝缘材料使用时的重要评价参数。为了减少介质损耗,希望材料具有较小的介电常数和更小的损耗角正切。损耗因素的倒数Q=(tanδ)-1在高频绝缘应用条件下称为电介质的品质因素,希望它的值要高。

工程材料:离子晶体的损耗,离子晶体的介质损耗与其结构的紧密程度有关。

紧密结构的晶体离子都排列很有规则,键强度比较大,如α-Al2O3、镁橄榄石晶体等,在外电场作用下很难发生离子松弛极化,只有电子式和离子式的位移极化,所以无极化损耗,仅有的一点损耗是由漏导引起的(包括本质电导和少量杂质引起的杂质电导)。这类晶体的介质损耗功率与频率无关,损耗角正切随频率的升高而降低。因此,以这类晶体为主晶相的陶瓷往往用在高频场合。如刚玉瓷、滑石瓷、金红石瓷、镁橄榄石瓷等

结构松散的离子晶体,如莫来石(3Al2O3·2SiO2)、董青石(2MgO·2Al2O3·5SiO2)等,其内部有较大的空隙或晶格畸变,含有缺陷和较多的杂质,离子的活动范围扩大。在外电场作用下,晶体中的弱联系离子有可能贯穿电极运动,产生电导打耗。弱联系离子也可能在一定范围内来回运动,形成热离子松弛,出现极化损耗。所以这类晶体的介质损耗较大,由这类品体作主晶相的陶瓷材料不适用于高频,只能应用于低频场合。

玻璃的损耗

复杂玻璃中的介质损耗主要包括三个部分:电导耗、松弛损耗和结构损耗。哪一种损耗占优势,取决于外界因素温度和电场频率。高频和高温下,电导损耗占优势:在高频下,主要的是由弱联系离子在有限范围内移动造成的松弛损耗:在高频和低温下,主要是结构损耗,其损耗机理目前还不清楚,可能与结构的紧密程度有关。般来说,简单玻璃的损耗是很小的,这是因为简单玻璃中的“分子”接近规则的排列,结构紧密,没有弱联系的松弛离子。在纯玻璃中加人碱金属化物后。介质损耗大大增加,并且随着加人量的增大按指数规律增大。这是因为碱性氧化物进人玻璃的点阵结构后,使离子所在处点阵受到破坏,结构变得松散,离子活动性增大,造成电导损耗和松弛损耗增加。

陶瓷材料的损耗

陶瓷材料的介质损耗主要来源于电导损耗、松弛质点的极化损耗和结构损耗。此外,表面气孔吸附水分、油污及灰尘等造成的表面电导也会引起较大的损耗。

在结构紧密的陶瓷中,介质损耗主要来源于玻璃相。为了改善某些陶瓷的工艺性能,往往在配方中引人此易熔物质(如黏土),形成玻璃相,这样就使损耗增大。如滑石瓷、尖晶石瓷随黏土含量增大,介质损耗也增大。因面一般高频瓷,如氧化铝瓷、金红石等很少含有玻璃相。大多数电陶瓷的离子松弛极化损耗较大,主要的原因是:主晶相结构松散,生成了缺固济体、多品型转变等。

高分子材料的损耗

高分子聚合物电介质按单体单元偶极矩的大小可分为极性和非极性两类。一般地,偶极矩在0~0.5D(德拜)范围内的是非极性高聚物;偶极矩在0.5D以上的是极性高聚物。非极性高聚物具有较低的介电常数和介质损耗,其介电常数约为2,介质损耗小于10-4;极性高聚物则具有较高的介电常数和介质损耗,并且极性愈大,这两个值愈高。

高聚物的交联通常能阻碍极性基团的取向,因此热固性高聚物的介电常数和介质损耗均随交联度的提高而下降。酚醛树脂就是典型的例子,虽然这种高聚物的极性很强,但只要固化比较完全,它的介质损耗就不高。相反,支化使分子链间作用力减弱,分子链活动能力增强,介电常数和介质损耗均增大。

高聚物的凝聚态结构及力学状态对介电性景响也很大。结品能链段上偶极矩的取向极化,因此高聚物的介质损耗随结晶度升高而下降。当高聚物结晶度大于70%时,链段上的偶极的极化有时完全被,介电性能可降至低值,同样的道理,非晶态高聚物在玻璃态下比在高弹态下具有更低的介质损耗。此外,高聚物中的增塑利、杂质等对介电性能也有很大景响。

介质损耗(dielectric loss )指的是绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。

介质损耗因数(dielectric loss factor)指的是衡量介质损耗程度的参数。【依据标准】GB/T 16491、GB/T 1040、GB/T 8808、GB/T 13022、GB/T 2790、GB/T 2791、GB/T 2792、GB/T 16825、GB/T 17200、GB/T 3923.1、GB/T 528、GB/T 2611、GB/T 6344、GB/T 20310、GB/T 3690、GB/T 4944、GB/T 3686、GB/T 529、GB/T 6344、GB/T 10654、HG/T 2580、JC/T 777、QB/T 2171、HG/T 2538、CNS 11888、JIS K6854、PSTC-7、ISO 37、AS 1180.2、BS EN 1979、BSEN ISO 1421、BS EN ISO 1798、BS EN ISO 9163、DIN EN ISO 1798、GOST 18299、DIN 53357、ISO 2285、ISO 34-1、ISO 34-2、BS 903、BS 5131、DIN EN 12803、DIN EN 12995、DIN53507-A、DIN53339、ASTM D3574、ASTM D6644、ASTM D5035、ASTM D2061、ASTM D1445、ASTM D2290、ASTM D412、ASTM D3759/D3759M

604.jpg

功能介绍

1.自动停机:试样破坏后,移动横梁自动停止移动(或自动返回初始位置、

2.自动换档:根据试验力大小自动切换到适当的量程,以确保测量数据的准确性

3.条件模块:试验条件和试样原始数据可以建立自己的标准模块的形式存储;方便用户的调用和查看,节省试验时间

4.自动变速:试验过程的位移速度或加载速度可按预先编制、设定的程序自动完成也可手动改变

5.自动程制:根据试验要求,用户可方便的建立自己的试验模板(方法、,便于二次调用,可实现试验加载速度、应力、应变的闭环试验控制

6.自动保存:试验结束,试验数据和曲线计算机自动保存,杜绝因忘记存盘而引起的数据丢失

7.测试过程:试验过程及测量、显示、分析等均由微机完成

8.批量试验:对相同参数的试样,一次设定后可顺次完成一批试验

9.试验软件:中文Windows用户界面,操作简便

10.显示方式:数据与曲线随试验过程动态显示

11.曲线遍历:试验完成后,可对曲线进行放大再分析,用鼠标查到试验曲线上各点对应的数据

12.试验报告:可根据用户要求进行编辑打印

13.限位保护:具有程控和机械两级限位保护

14.过载保护:当负荷超过额定值3~5%时,自动停机

15.报告显示:自动和人工两种模式求取各种试验结果,自动形成报表,使数据分析过程变的简单,便于用户

16.添加试验方法:用户可跟据试验要求,添加试验方法

软件说明

a.软件系统:中英文Windows2000/XP/Win7平台下软件包

b.自动储存:试验条件、试验结果、计算参数、标距位置自动储存。

c.自动返回:试验结束后,试验机横梁会自动返回到试验初始位置。

d.连续试验:一批试验参数设定完成后,可连续进行测试。

e.多种曲线:同一图形上可显示多种不同的曲线:荷重--位移、荷重-时间、位移--时间、应力—应变、荷重—两点延伸等到多种曲线。

f.曲线对比:同组试样的曲线可在同一张图上叠加对比。

g.报告编辑:可按用户要求输出不同的报告形式。

h.动态显示:测试过程中,负荷、伸长、位移及选中的试验曲线随着测试的进行,实时动态显示在主控屏幕上。

i.自动变标:试验中负荷、伸长等曲线坐标,如果选择不当,可根据实测值的大小,自动变换座标。保证在任何情况下 曲线以大的形式显示在屏幕上。

j.峰值保持:在测试的整个过程中,测试项目的大值始终随着试验的进行,在屏幕窗口上显示。

k.执行标准:满足GB、ISO、JIS、ASTM、DIN等多种试验方法和标准。

试验机仪表:本仪表采用国际比较先进的放大器,A/D、微处理器、高性能高清晰的液晶显示屏构成,整个系统采用类似手机PDA键盘,光标导航,全中文显示,浮点数数据处理,结构简单操作方便,自动计算存储,适合于企业,质检单位材料力学仪表。

工作环境条件1 在室温100C~350C范围内,相对湿度不大于80%;2 在稳固的基础或工作台上正确安装,水平度为0.2/1000;3 在无震动、无腐蚀性介质和无较强电磁场干扰的环境中;4 电源电压的波动范围不应超出额定电压的±10%。

结构特征及工作原理

本机由机械、电气二大部分组成。

1机械部分结构及工作原理:

本机采用电动加载方式,底部是整机结构承载支架,内部包含有电机驱动器、加载电机、减速机构、动力传动机构等部件;上部是试样夹持及力值、位移测量机构,包含有试样拉伸夹具、测力传感器、位移传感器等主要部件。

2 电气部分:

    电气部分由显示测量控制部分组成。显示测量控制部分实现各种控制、显示、数据采集、处理等功能。软件部分的操作请仔细阅读《软件说明书》。

3 本机的几项主要功能:

3.1 全开放性参数设置

3.2 设置参数保存

3.3 浮动零点设置,可随时调整零点

3.4 峰值保持及存储,常值跟随;

3.5 在有效速度范围内,速度值任意设置;

3.6 横梁移动过程中的速度快捷切换功能

3.7 灵活的数据查询显示功能;

3.8 过载停机保护功能;

3.9 试验结束自动判断功能;

3.10 极限位置保护等;

本机采用机电一体化设计 ,主要由测力传感器、变送器、微处理器、负荷驱动机构、计算机及彩色喷墨打印机构成。它具有宽广准确的加载速度和测力范围,对载荷、位移的测量和控制有较高的精度和灵敏度,还可以进行等速加载、等速位移的自动控制试验。落地式机型 ,造型涂装均充分考量了现代工业设计,人体工程学之相关原则。

主要特点:采用进口光电编码器进行位移测量,控制器采用嵌入式单片微机结构,内置功能强大的测控软件,集测量、控制、计算、存储功能于一体。具有自动计算应力、延伸率(需加配引伸计)、抗拉强度、弹性模量的功能,自动统计结果;自动记录大点、断裂点、点的力值或伸长量;采用计算机进行试验过程及试验曲线的动态显示,并进行数据处理,试验结束后可通过图形处理模块对曲线放大进行数据再分析编辑,并可打印报表。

品质保证:3年保修,终身维护!

注意事项1、该仪器初始的包装材料需小心保存,安装需由本公司的专业技术人员进行操作。2、若仪器由于任何原因必须返修,必须将其装入原纸箱中以防运输途中损坏。3、在开机前,操作者要首先熟悉操作方法。

使用本机之前,请认真阅读使用说明书,充分理解之后,再开机使用。请爱护本机,正确使用,以便使该机永远保持较高的精度和良好的运行状态。

 

中国检测行业与验证服务的者和智领者,帮助众多检测质检单位和学校教研单位提供一站式的全面质量解决方案。

 

满足标准:GBT 1409-2006测量电气绝缘材料在工频、音频、高频(包括米波波长在内)下电容率和介质损耗因数的推荐方法准确度ALC ON 10% x设定电流 + 20μAALC OFF 6% x设定电压 + 20μADC偏置电压源电压 / 电流范围:0V—±5V / 0mA—±50mA分辨率:0.5mV / 5μA电压准确度:1% x设定电压 + 5mVISO ON:用于电感、变压器加偏置测试AC源内阻ISO ON:100ΩISO OFF:30Ω、50Ω、
电源电压:220V±20%,50Hz±2Hz功耗80VA体积(W×H×D): 280 mm × 88 mm × 370 mm(无护套),369 mm × 108 mm × 408 mm(带护套)。重量:约5kg将在以后的测试过程中进行开路校正计算。如果频率1,频率2。设置为OFF, 开路校正计算采用插入法所计算出的当前频率的开路校正数据。如果频率1,频率2 设置为ON, 同时当前测试频率等于频率1,频率2, 则频率1,频率2 的开路校正数据将被用于开路校正的计算。
平衡测试功能变压器参数测试功能测试速度:13ms/次电压或电流的自动电平调整(ALC)功能V、I 测试信号电平监视功能内部自带直流偏置源可外接大电流直流偏置源10点列表扫描测试功能30Ω、50Ω、100Ω可选内阻内建比较器,10档分选和计数功能内部文件存储和外部U盘文件保存测量数据可直接保存到U盘RS232C、 USB 、LAN、HANDLER、GPIB、DCI接口
选件,DCI与GPIB 只能2者选1通用技术参数工作温度, 湿度:0℃-40℃, ≤ 90%RH
列表扫描10点列表扫描可对频率、AC电压/电流、内/外DC偏置电压/电流进行扫描测试每扫描点可单独分选内部非易失性存储器:100组LCRZ仪器设定文件,201次测试结果外部USB存储器GIF图像LCRZ仪器设定文件测试数据USB存储器直接存储
接口I/O接口:HANDLER,从仪器后面板输出串行通讯接口:USB、RS232C并行通讯接口:GPIB接口(选件)网络接口:LAN存储器接口:USB HOST(前面板)偏置电流源控制接口DCI
技术参数显示器:480×RGB×272,4.3寸TFT LCD显示器。测试信号频率:20Hz—1MHz分辨率:10mHz,4位频率输入准确度:0.01%AC电平测试信号电压范围:10mV—2Vrms电压分辨率:100μV,3位输入准确度ALC ON 10% x设定电压 + 2mVALC OFF 6% x设定电压 + 2mV测试信号电流范围:100μA—20mA电流分辨率:1μA,3位输入
性能特点4.3寸TFT液晶显示中英文可选操作界面高1MHz的测试频率,10mHz分辨率
GDAT-S 的短路校正功能能消除与被测元件相串联的寄生阻抗(R, X)造成的误差。
移动光标至短路设定域,屏幕软键区显示下列软键。
短路校正功能操作步骤短路校正包括采用插入计算法的全频短路校正和对所设定的2 个频率点进行的单频短路校正。执行下列操作步骤利用插入计算法对全频率进行短路校正。
按软键 关 ,关闭开路校正功能。以后的测量过程中将不再进行开路校正的计算。短路校正
使用DCI接口可控制外部直流偏流源,偏置电流可达120A。

镀膜介电常数介损测试仪

由于频率范围的不同,实际上电桥构造会有明显的不同&例如一个50 pF〜1 000 pF的电容在 50 Hz时的阻抗为60 MC〜3 MQ,在100 kHz时的阻抗为3 000 Q〜1 500

频率为100 kHz时,桥的四个臂容易有相同数量级的阻抗,而在50 Hz〜60 Hz的频率范围内则是 不可能的。因此,出现了低频和(相对)高频两种不同形式的电桥。

A. 1.2低频电桥

一般为高压电桥,这不仅是由于灵敏度的缘故,也因为在低频下正是高电压技术特别对电介质损耗 关注的问题.电容臂和测量臂两者的阻抗大小在数量级上相差很多,结果,绝大部分电压都施加在电容 Cx和Cn上,使电压分配不平衡。上面给出的电桥平衡条件只是当低压元件对高压元件屏蔽时才成 立。同时,屏蔽必须接地,以保证平衡稳定。如图A. 2所示。屏蔽与使用被保护的电容G和*是一 致的,这个保护对于CN来说是必不可少的。

由于选择不同的接地方法,实际上形成了两类电桥。

A. L2. 1带屏蔽的简单西林电桥

桥的B点(在测量臂边的电源接线端子)与屏蔽相连并接地。

屏蔽能很好地起到防护高压边影响的作用,但是增加了屏蔽与接到测量臂接线端M和N的各根 导线之间电容,此电容承受跨接测量臂两端的电压,这样会引入一个通常使姑温的测量精度限于 0.1%数量级的误差,当电容公和言不平衡时尤为显著。

A. 1.2. 2带瓦格纳(Wagner)接地电路的西林电桥

图A.2示出了使电桥测量臂接线端与屏蔽电位相等的方法,这种方法是通过使用外接辅助桥臂 Za、ZN瓦格纳接地电路),并使这两个辅助桥臂的中间点P接到屏蔽并接地。调节辅助桥臂(实际为 ZQ以使在ZA和Ze上的电压分别与电桥的电容臂和测量臂两端的电压相等。显然,这个解决方法包 括两个桥即主桥AMNB和辅桥AMPB(或ANPB)同时平衡。通过检测器从一个桥转换到另一个桥逐 次地逼近平衡而终达到二者平衡,用这种方法精度可以提高一个数量级,这时,实际上该精度只决定 于电桥元件的精密度。

14

必须指出,只有当电源的两端可以对地绝缘时才使用上述特殊的解决方法。如果不可能对地绝缘, 则必须使用更复杂的装置(双屏蔽电桥).

A. 1.3高频西林电桥

这种电桥通常在中等的电压下工作,是比较灵活方便的一种电桥;通常电容CN是可变的(在高压 电桥中电容通常是固定的),比较容易采用替代法。

由于不期望电容的影响随频率的增加而增加,因此仍可有效使用屏蔽和瓦格纳接地线路。

A. 1.4关于检测器的说明

当西林电桥的B点接地时,必须避免检测器的不对称输入(这在电子设备中是常有的)。

然而这样的检测器只要接地输入端总是连接于P点,就能与装有瓦格纳接地线路的电桥一起 使用。

A.2 变压器电桥(电感比例臂电桥)

A.2. 1概述

这种电桥的原理比西林电桥简单。其结构原理见图A. 3O

当电桥平衡时,复电抗厶和Zm之间的比值等于电压矢量LA和耳 间的比值。如果电压矢量的比 值是已知的,便可从已知的Zm推导出Z"在理想电桥中比例UJU2是一个系数K,这样Zk = KZm, 实际上Zm的幅角直接给出汲,

变压器电桥比西林电桥有很大的优点,它允许将屏蔽和保护电极直接接地且不需要附加的辅助 桥臂。

这种电桥可在从工频到数十MHz的频率范围内使用,比西林电桥使用的频率范围宽,由于频率 范围的不同,桥的具体结构也不相同.

A.2.2低频电桥

通常是一个高压电桥(更精密,电压顷 是高压,以是中压),这种电桥的技术与变压器的技术有关。 可采用两类电源:

1) 电源电压直接加到一个绕组上,另一个绕组则起变压器次级绕组的作用。

2) 将电源加到初级绕组上(见图A.3),而电桥的两个绕组是由两个分开的次级线路组成或是由 一个带有中间抽头能使获得电压,和以 的次级绕组组成.

与所有的测量变压器一样,电桥存在误差(矢量比U} /U2与其理论值之间的差儿 这种误差随负载 而变化,尤其是Ui和以之间的相位差,它会直接影响ta海的测量值。

因此,必须对电桥进行校正,这可以用一个无损耗电容Cn(与在西林电桥中使用的相似)代替Zx进 行.如果d与a的值相同,这实际上是替代法,测试前应校正。但由于&很少是可调的,因此负载 的变化对公不再有效。电桥在恒定负载下工作是可能的,如图A. 4所示:当测量嵐时,用一个转换开 关把6接地,反之亦然。这时对于高压绕组来说两个负载的总和是恒定的。(严格地说,低压边也应 该用一个相似的装置,但由于连在低压边的负载很小,尽管采用这样处理很容易,但意义小。)

另外,若用并联在电压上的一个纯电容*校正时,承受电压以 的测量阻抗Zm组成如下:

1) 如果以 和,是同相的(理想情况),则用一个纯电容Cm组成。

2) 如果U2超前Un则用一个电容Cm和一个电阻Rm组成。

3) 如果以滞后于Un则电阻Rm应变成负的。这就是说,为了重新建立平衡必须在U] 一边并 人一个电阻形成电流分量,其实并不存在适用于高压的可调高电阻,因此通常阻性电流分量 是用一个辅助绕组来获得的,这个辅助绕组提供一个与U]同相的低电压图A. 5)。

注:不可在d上串接一个电阻。因为如果将电阻接在电容器后面会破坏Cn测量极和保护极间的等电位;如果将 电阻接到前面的高压导线上,则电阻(内)电流也将包括保护电路的电流,这就可能无法校正。

这些论述同样适用于上述第二种情况的电阻Rm。但在低压边容易将三个电阻R、足 和F以星形联接来

变压器介质损耗测试仪式中:

AChCh的增量。

在50 kHz到50 MHz的频率范围内能方便地设计这种网络,这种网络也容易有效地屏蔽。但其缺 点是平衡随频率的变化太灵敏,以致于电源频率的谐波很不平衡。为了能拓宽频率范围,必须改变或换 接电桥元件,在较高频率下接线和开关阻抗(若使用开关时)会引入很大的误差。

A* 4谐振法(Q表法)

谐振法或Q表法是在10 kHz到260 MHz的频率范围内使用。它的原理是基于在一个谐振电路 中感应一个已知的弱小电压时,测量在该电路出现的电压。图A. 8表示这种电路的常用形式,在线路 中通过一个共用电阻R将谐振电路耦合到振荡器上,也可用其他的耦合方法。

操作程序是在规定的频率下将输入电压或电流调节到一个已知值,然后调节谐振电路达到大谐 振,观察此时的电压U八 然后将试样接到相应的接线端上,再调节可变电容器使电路重新谐振,观察新 的电压S的值。

在接入试样并重新调节线路时,只要见图A. 8)其总电容几乎保持不变。试样电容近似于 △G即是可变电容器电容的变化量。

试样的损耗因数近似为:

"泌& 余(*一£)  A.9)

式中:

G——电路中的总电容,包括电压表以及电感线圈本身的电容;

Q】、Q°——分别为有无试样联接时的Q值。

测量误差主要来自两台指示器的标定刻度以及在连线中尤其是在可变电容器和试样的连线中所引 入的阻抗。对于高的损耗因数值的条件可能不成立,此时上面引出的近似公式不成立.

A.5变电纳法(变电抗法)

图1所示的测微计电极系统是哈特逊(Hartshorn)改进的,被用于消除在高频下因接线和测量电容 器的串联电感和串联电阻对测量值产生的误差。在这样的系统中,是由于在测微电极中使用了一个与 试样连接的同轴回路,不管试样在不在电路中,电路中的电感和电阻总是相对地保持恒定。夹在两电极 之间的试样,其尺寸与电极尺寸相同或小于电极尺寸,除非试样表面和电极表面磨得很平整,否则在试 样放到电极系统里之前,必须在试样上贴一片金属箔或类似的电极材料。在试样抽出后,调节测微计电 极,使电极系统得到同样的电容。

按电容变化仔细校正测微计电极系统后,使用时则不需要校正边缘电容、对地电容和接线电容。其 缺点是电容校正没有常规的可变多层平板电容器那么精密且同样不能直接读数。

在低于1MHz的频率下,可忽略接线的串联电感和电阻的影响,测微计电极的电容校正可用与测 微计电极系统并联的一个标准电容器的电容来校正,

在接和未接试样时电容的变化量是通过这个电容器来测得。

在测微计电极中,次要的误差来源于电容校正时所包含的电极的边缘电容,此边缘电容是由于插入 一个与电极直径相同的试样而稍微有所变化,实际上只要试样直径比电极直径小2倍试样厚度,就可 消除这种误差。

首先将试样放在测微计电极间并调节测量电路参数。然后取出试样,调节测微计电极间距或重新 调节标准电容器来使电路的总电容回到初始值。

按表2计算试样电容C吳

损耗因数为:

也响=(七云"  (a.io)

式中:

△G——接入试样后,在谐振的两侧当检测器输入电压等于谐振电压的也/2时可变电容器

(图1)的两个电容读数之差。

△G—在除去试样后与上述相同情况下的两电容读数差.

值得注意的是在整个试验过程中试验频率应保持不变。

注;贴在试样上的电极的电阻在髙频下会变得相当大,如果试样不平整或厚度不均匀,将会引起试样损耗因数的明 显增加。这种变得明显起来的频率效应,取决于试样表面的平整度,该频率也可低到10 MHzt因此,必须在 io MHg及更高的频率下,且没有贴电极的试样上做电容的损耗因数的附加测量,假设Cw和tan<5w为不贴电 极的试样的电容和损耗因数,则计算公式为:

tanB = ^-tan^w  ( A. 11 )

Cw

式中:

Cw-…带电极的试样电容。

A. 6屏蔽

在一个线路两点之间的接地屏蔽,可消除这两点之间的所有的电容,而被这两个点的对地电容所代 替,因此,导线屏蔽和元件屏蔽可任意运用在那些各点对地的电容并不重要的线路中;变压器电桥和带 有瓦格纳接地装置的西林电桥都是这种类型的电路。

从另一方面来说,在采用替代法电桥里,在不管有没有试样均保持不变的线路部分是不需要屏 蔽的。

实际上,在电路中将试样、检测器和振荡器的连线屏蔽起来。并尽可能将仪器封装在金属屏蔽里, 可以防止观察者的身体(可能不是地电位或不固定)与电路元件之间的电容变化.

对于100 kHz数量级或更高的频率,连线应可能短而粗,以减小自感和互感;通常在这样的频率下 即使一个很短的导线其阻抗也是相当大的,因此若有几根导线需要连接在一起,则这些导线应尽可能的 连接于一点。

如果使用一个开关将试样从电路上脱开,开关在打开时它的两个触点之间的电容必须不引入测量 误差,在三电极测量系统中,要做到这点,可以在两个触点间接入一个接地屏蔽,或是用两个开关串联, 当这两个开关打开时,将它们之间的连线接地,或将不接地且处于断开状态的电极接地。

A.7电桥的振荡器和检测器

A. 7, 1交流电压源

满足总谐波分量小于1%的电压和电流的任一电压源。

A.7.2检测器

下列各类检测器均可使用,并可以带一个放大器以增加灵敏度:

1) 电话(如需要可带变频器);

2) 电子电压表或波分析器;

3) 阴极射线示波器;

4) “电眼”调节指示器;

5) 振动检流计(仅用于低频)。

在电桥和检测器中间需加一个变压器,用它来匹配阻抗或者因为电桥的一输出端需接地。

谐波可能会掩盖或改变平衡点,调节放大器或引入一个低通滤波器可防止该现象。对测量频率的 二次谐波有40 dB的分辨率是合适的,

A.8频率范围

方 法

频率的推荐范围

试样形式

1.西林电桥

0. 10 MHz及以下

板或管


2,变压器电桥

15 Hz〜50 MHz


3.并联丁型网络

50 kHz〜30 M^Hz


4,谐振法

10 kHz〜26。MHz


5,变电纳法

10 kHz〜100 MHz


 1西林电桥电路图

具有瓦格纳(Wagner)接地电路的西林电桥变压器电桥,恒载校正虚线:与Cm并联形成一个高电阻(当A超前于11时)变压器电桥,当既滞后于V时的补偿(用绕组仏)检测器并联T型网络的电路原理图并联T型网络的实际线路图谐振法的电路图

微信图片_20210324151557.jpg

镀膜介电常数介损测试仪一些介质在电场极化时也会产生损耗,这种损耗一般称极化损耗。位移极化从建立极化到其稳定所需时间很短(约为10-16~10-12s),这在无线电频率(5×1012Hz 以下)范围均可认为是极短的,因此基本上不消耗能量。其他缓慢极化(例如松弛极化、空间电荷极化等)在外电场作用下,需经过较长时间(10-10s或更长)才达到稳定状态,因此会引起能量的损耗。
热线电话 在线咨询

网站导航