注射用水总有机碳分析仪在线型产品特点再根据管网中各管段的设计秒流量,按照用水的流动应处于湍流状态,即管内水流速度大于2m/s的要求,计算各管段的管径、管道阻力损失,进而确定工艺用水系统所需的输送压力,选择供水泵。(1)确定输水管径在求得轴测图中各管段的设计秒流量后,根据下述水力学公式计算和控制流速,选择管径:di=18.8(Qg/υ)1/2式中di——管道的内径,Qg——各管段的设计秒流量,m3/s;υ——管内流速,m/s。一般情况下,管道的直径是由系统内经济流速确定的。由上式可见,一旦流速确定,自然就得到了对应流量的直径。配管中流体的阻力,对于同量来说,管径越大,阻力损失越小。这在动力方面是经济的,但设备的费用会增加,并且还可能不会满足工艺用水系统水流状态为湍流的要求。
纯中文触摸屏设计,操作简单方便;
重复性误差:≤ 3%
对于粘性液体选用0.5~1.0m/s,在一般情况可选取的流速为1.5~3m/s;(2)低压工业气体的流速一般为8~15m/s,较高压力的工业气体则为15~25m/s,饱和蒸汽的流速可选择20~30m/s,而过热蒸汽的流速可选择为30~50m/s。流体运动的类型可从雷诺实验中观察到。雷诺根据以不同流体和不同管径获得的实验结果,证明了支配流体流动形式的因素,除流体的流速q外,尚有流体流过导管直径d、流体的密度ρ和流体的黏度ц。流体流动的类型由dqρ/ц所决定。此数值称为雷诺准数,以Re表示。根据雷诺实验,可将流体在管道内的流动状态分为平行流(滞流)和湍流两种情况。应注意,雷诺准数为一个纯粹数值,没有单位。
配备大量的储存空间,能够存储大量的测试数据。
产品说明:
2.1生产工艺用水点情况和用水量标准工艺用水系统中的用水量与采用的工艺用水设备的完善程度、生产的工艺方法、生产地水资源的情况等因素有关。通常,工艺用水的变化比较大。一般来说,工艺用水点越多,用水工艺设备越完善,每天中用水的不均匀性就越小。用水的情况因各个工艺用水点的使用条件不同,差异很大。如前所述,工艺用水系统分单个与多个用水点、仅为高温用水点或仅为低温用水点、既有高温用水点又有低温用水点、不同水温的用水点中,既有同时使用各种水温的情况,又有分时使用不同水温的情况,等等。因此,用水点的用水情况很难简单地确定。必须在设计计算以前确定用水系统的贮存、分配输送方式,以确定出在此基础上的大瞬时用水量。然后。
注射用水总有机碳分析仪在线型制水(纯化水、注射用水)的在线监测和实验室测试,以及清洁验证;环保测试、电子行业、食品行业等。
测量范围:0.001mg/L~1.0mg/L(传感器可定制,浓度可调节醉达到1500mg/L,污水1.0 mg/L~1500mg/L)具有RS232数据接口,历史数据可存储6个月。高性能CPU,触摸屏设计,超大640*480点阵真彩显示器。
仪器采用便携设计,使用轻便,方便移动至取样点。水系统的内源性污染,内源性污染的影响因素(1)制水系统的设计(2)选材(3)运行(4)维护(5)贮存(6)使用分析时间:连续分析
在纯水设备安装后,具体过滤水质情况我们通常根据设备上的电导率仪或TDS数值来判断出水水质好坏,但是需要提醒的是:TDS指标检测结果也不能代表水质就健康,TDS值真的没有那么重要。所以,我们今天来谈谈为什么要检测TOC、COD等指标,以及这些指标超标对人健康的威胁。TDS溶解性总固体它表明1升水中溶有多少毫克溶解性固体。TDS主要成分是水中Ca2+MG2+Na+K+等离子的浓度。国家限制标准为:1000mg/L。COD:化学需氧量COD超标,生活污水、各种工业废水、水中腐殖质等是水中耗氧量的来源。健康威胁:会让人体降低、影响生育能力、导致、对系统产生干扰,消化道等与耗氧量呈显著的相关。国标限值:故标准规定耗氧量的限值为1mg/l,特殊情况下不超过5mg/L。
因此,在流体流动中并不存在单纯的湍流,也没有纯粹的滞流。实际上,在湍流中同时有滞流层存在;而在滞流中也可能有湍流的存在,这是因为部分流体质点在滞流时有变形和旋转的现象。流体边界层的存在,对其传热和扩散过程都会产生很大的影响。上述流速分布情况系指流体的流动已达稳定状态而言。流体在进入管道后需要流经一定距离,其稳定的状态才能真正形成。对于湍流,实验证明,其流经的直管距离达到40倍管道直径以后,稳定的状态才方可获得。另外,流速的分布规律只有在等温状态下才是成立的,即要求流体中各点的温度是一致的、恒定不变的。2.4用水系统管道的阻力计算工艺用水管道的水力计算,通常,根据各用水点的使用位置,先绘出系统管网轴测图。
电源:AC 220V /50Hz取样瓶数:20 只
用水设备装置设计安装要求?用水设备属于日常生活中大家比较常见的水处理设备,是一种专门应用在行业的纯化水制备装置,由于领域对用水的要求极其严格,因此用水设备装置必须严格依照相关部门的GMP标准执行,特别是装置的选材更为严格。下面小编为大家介绍一下用水设备装置设计安装要求:水系统的组成单元均可能成为微生物内源性污染源。原水中的微生物被吸附于活性炭、去离子树脂、过滤膜或其它设备的表面上,可形成生物膜。
工艺管道内满足微生物控制的流速采用2~3m/s。(2)确定管段的压头损失①工艺用水系统管道的沿程阻力损失Py=KL式中Py——工艺管段的沿程阻力损失,mH2O;L——所计算管段的长度;K——管道单位长度的压力损失,按照用水管道通常采用不锈钢,管道内部的流速大于2m/s,则可使用下式计算:K=0.00107×υ2/d1.3(mH2O/m)υ——管道内部平均水流速度,m/s;d——管道计算内径,通常,直管段的压力损失可用K=0.007×(mH2O/m)计算。②管道的局部损失Pj=Σξ(υ2/2g)式中Pj——局部阻力损失的总和,mH2O;Σξ——局部阻力系数之和,按照工艺用水系统管道中的不同管件及阀门附件的构造情况有各种不同的数值;
我国1998版《药品生产质量管理规范》(GMP)的弟十四章弟八十五条将“验证”定义为“证明任何程序、生产过程、设备、物料、活动或系统确实能导致预期结果的有文件证明的一系列活动”。
采用嵌入式系统,触摸屏设计,纯中文操作方便简易。
Σр=Σξ·(υ2/2g)ρ·1000式中Σр——系统管道压力损失;Σξ——管接头阻力之和;υ——管道内部流动速度,m/s;g——重力加速度,9.81m/s2;ρ——液体密度,kg/m3。⑤阀门中的压力损失△рva=(Q/Kv)2·(ρ/1000)式中△рva——阀门中的压力损失;Q——流量,m3/h;Kv——阀门特殊的流量,m3/h;ρ——液体的密度,kg/m3。ρ=0.1Mpa(3)管道阻力的计算方法根据管道的布置方式,用水系统阻力计算的步骤略有区别,但无论系统为不循环管道系统或循环的管道系统,由于循环系统中通常是水回至贮罐内,水泵本身并不能形成闭环路,因系统中通常是水回至贮罐内,水泵本身并不能形成闭环路。
主要特征:
精密分析仪器的特殊进样要求。
应用领域:
环保、电子、食品等行业的水质分析;
我国GMP对制药企业制水系统微生物污染的要求,《药品生产质量管理规范》对生产企业工艺用水系统的要求,如制药企业水系统的要求可以看到,新版GMP强调了水系统的“制备、储存和分配应能防止微生物的滋生,这就对整个系统设备和管道的材料构成、管道回路的布局和设备性能提出了特别的要求。并加强了微生物限度的检测。
TOC总有机碳分析仪总有机碳(TOC)分析仪采用世界先进的双波长红外外氧化技术,精度高、灵敏度高。高性能CPU,触摸屏智能化控制,具有离线分析和在线分析选配功能,配制外置式打印机,人性化的设计理念,更换UV灯和泵管不用拆开机箱,操作简单、方便
1. 载气Ⅰ通过压力调节器后与来自注射泵的试剂、来自注射泵及分配阀的水样混合后共同进入搅动环路,并进行充分的酸化反应。水样中的无机碳在磷酸的作用下转化成二氧化碳气体然后从气/液分离器口逸出。水样中的有机碳与试剂中的过硫酸钠进入反应器。在紫外光和过硫酸钠的氧化作用下,有机碳转化成二氧化碳气体。
2. 载气Ⅱ通过流量计进入反应器,带动二氧化碳气体进入冷凝器。冷凝后的二氧化碳气体进入电子制冷器进一步降温至6℃,从而达到气/水分离的目的,消除水分对测定值的影响。
3. 滤去二氧化碳气体中可能存在的固体微粒和干扰离子后进入NDIR进行浓度测量。
4. NDIR输出与二氧化碳气体浓度相对应的模拟信号;经AD变换后,这个信号被CPU采集并处理,显示出水样的TOC总量值。
5. 无机碳的去除
样品中以碳酸盐、重碳酸盐和以溶解态存在的二氧化碳必须在有机碳测试过程前去除,目的是只考虑“有机碳”。样品与试剂混合后其中的无机碳与磷酸发生反应在载气的带动下,二氧化碳从气液分离器逸出。
6. 有机物质的氧化
样品与试剂混合后流入反应器,通过紫外光线的照射及氧化剂过硫酸钠(铵)的作用,样品中的有机碳快速反应,形成二氧化碳。
7. 数据处理
仪器采用连续及间歇式进样相结合,TOC氧化充分,增加了测量范围、提高了仪器的精度、及稳定度。数据处理器采集一定时间的CO2气体浓度,做积分处理及线性拟合。0-5000mg/L的大量程仪器
中华人民共和国国家标准饮用水化学处理剂卫生安全性评价GB/T17218-1998Hyaienicsafetvevaluationforchemicalsusedindrinki
ngwatertreatment范围本标准规定了饮用水化学处理剂的卫生安全性要求和监测检验方法。本标准适用于混凝、絮凝、消毒、氧
化、pH调节、软化、灭藻、除氟、氟化等用途的饮用水化学处理2引用标准下列标准所包含的条文,通过在本标准中引用而构成为本
标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准各方应探讨使用下列标准新版本的可能性。G
B5749-1985生活饮用水卫生标准GB/T5750一1985生活饮用水标准检验法GB7919一1987化妆品安全性评价程序和方法GB/T9857
-1988化学试剂氧化锁3卫生要求3.1饮用水化学处理剂在规定的投加量使用时,处理后水的一般感官指标应符合GB5749的要求。3.2
有毒物质指标的要求3.2.1饮用水化学处理剂带入饮用水中的有毒物质是GB5749中规定的物质时,该物质的容许限值不得大于相应规
定限值的10%。本标准规定的有毒物质分为四类。3.2.1.1金属:砷、硒、汞、镐、铬、铅、银。3.2.1.2无机物:取决于产品的原料、
配方和生产工艺、3.2.1.3有机物:取决于产品的原料,配方和生产工艺。3.2.1.4放射性物质:直接采用矿物为原料的产品应测定总
“放射性和总B放射性。3.2.2饮用水化学处理剂带入饮用水中的有毒物质在GB5749中未做规定时,可参考国内外相关标准判定,其
容许限值不得大于相应限值的10%。3.2.3如果饮用水化学处理剂带入饮用水中的有毒物质无依据可确定容许限值时,必须按附录B确定
该物质在饮用水中高容许浓度,其容许限值不得大于该容许浓度的10%。4监测检验方法41欧用水化学处理剂的样
3.1饮用水化学处理剂在规定的投加量使用时,处理后水的一般感官指标应符合GB5749的要求。
3.2有毒物质指标的要求
3.2.1饮用水化学处理剂带入饮用水中的有毒物质是GB5749中规定的物质时,该物质的容许限值
不得大于相应规定限值的10%。本标准规定的有毒物质分为四类。
3.2.1.1金属:砷、硒、汞、镉、铬、铅、银。
3.2.1.2无机物:取决于产品的原料、配方和生产工艺。
3.2.1.3有机物:取决于产品的原料、配方和生产工艺。
3.2.1.4放射性物质:直接采用矿物为原料的产品应测定总a放射性和总β放射性。
3.2.2饮用水化学处理剂带入饮用水中的有毒物质在GB5749中未做规定时,可参考国内外相关标
准判定,其容许限值不得大于相应限值的10%。
3.2.3如果饮用水化学处理剂带入饮用水中的有毒物质无依据可确定容许限值时,必须按附录B确
定该物质在饮用水中高容许浓度,其容许限值不得大于该容许浓度的10%。
4监测检验方法
4.1饮用水化学处理剂的样品采集和配制:见附录A。
4.2本标准规定的监测检验方法:见GB/T 5750.
3术语和定义
下列术语和定义适用于本标准。
3.1
生活饮用水drinking water
供人生活的饮水和生活用水。GB 5749-2006
3.2.4
分散式供水
non-central water supply
分散居户直接从水源取水,无任何设施或仅有简易设施的供水方式。
3.3
常规指标regular indices
能反映生活饮用水水质基本状况的水质指标。
3.4
非常规指标non-regular indices
根据地区、时间或特殊情况需要实施的生活饮用水水质指标。
4生活饮用水水质卫生要求
4.1生活饮用水水质应符合下列基本要求,保证用户饮用安全。
4.1.1生活饮用水中不得含有病原微生物。
4.1.2生活饮用水中化学物质不得危害人体健康,
4.1.3生活饮用水中放射性物质不得危害人体健康。
4.1.4生活饮用水的感官性状良好。
4.1.5生活饮用水应经消毒处理。
4.1.6生活饮用水水质应符合表1和表3卫生要求。集中式供水出厂水中消毒剂限值、出厂水和管网
末梢水中消毒剂余量均应符合表2要求。
4.1.7小型集中式供水和分散式供水因条件限制,水质部分指标可暂按照表4执行,其余指标仍按表
1、表2和表3执行。
4.1.8当发生影响水质的突发性公共事件时,经市级以上人民政府批准,感官性状和一般化学指标可
适当放宽。
4.1.9当饮用水中含有附录A表A.1所列指标时,可参考此表限值评价。8涉及生活饮用水卫生安全产品卫生要求
8.1处理生活饮用水采用的絮凝、助凝、消毒、氧化、吸附、pH调节、防锈、阻垢等化学处理剂不应污染
生活饮用水,应符合GB/T 17218要求。
8.2生活饮用水的输配水设备、防护材料和水处理材料不应污染生活饮用水,应符合GB/T 17219
要求。
9水质监测
9.1供水单位的水质检测
9.1.1供水单位的水质非常规指标选择由当地县级以上供水行政主管部门和卫生行政部门协商确定。
9.1.2城市集中式供水单位水质检测的采样点选择、检验项目和频率、合格率计算按照CJ/T 206
执行。
9.1.3村镇集中式供水单位水质检测的采样点选择、检验项目和频率、合格率计算按照SL308执行。
9.1.4供水单位水质检测结果应定期报送当地卫生行政部门,报送水质检测结果的内容和办法由当地
供水行政主管部门和卫生行政部门商定。
9.1.5当饮用水水质发生异常时应及时报告当地供水行政主管部门和卫生行政部门。
9.2卫生监督的水质监测
9.2.1各级卫生行政部门应根据实际需要定期对各类供水单位的供水水质进行卫生监督、监测。
9.2.2当发生影响水质的突发性公共事件时,由县级以上卫生行政部门根据需要确定饮用水监督、监
测方案。
9.2.3卫生监督的水质监测范围、项目、频率由当地市级以上卫生行政部门确定.
10水质检验方法
生活饮用水水质检验应按照GB/T 5750(所有部分)执行。
BC-50A总有机碳分析仪是北京北广精仪公司自主研发的高精度总有机碳分析仪器。产品使用电导率差值检测技术,检测精度高,响应时间短。产品符合国家法规和标准,可满足制水、注射用水、超纯水和去离子水的在线及离线的检测要求。
一.工作原理
本仪器采用紫外氧化的原理,将样品中的有机物氧化为二氧化碳,二氧化碳的测试采用的是直接电导率法,通过测试经过氧化反应的样品的总碳含量和未经过氧化反应的样品总无机碳的含量差值来测定总有机碳含量,即:总有机碳(TOC)=总碳(TC)-总无机碳(TIC)。
二.产品特点
1.仪器采用便携设计,使用轻便,方便移动至取样点。
2.采用嵌入式系统,触摸屏设计,纯中文操作方便简易。
3.针对制水(TOC含量在1000ppb以下)总有机碳含量的检测设计,进行检测。
4.配备大量的储存空间,能够存储大量的测试数据。
5.中文打印,输出测试参数、测试结果。
6.在使用、贮存和更换过程中不需要气体或试剂,无移动部件,减少维修和维护成本。
7.当测试样品浓度超过规定限度,仪器能够自动报警,并输出控制信号。
8.符合国家《中国药典》规定的测试方案,可以提供 IQ/OQ/PQ 服务。
三.性能规格:
测量范围:0.001mg/L~1.0mg/L(传感器可定制,浓度可调节达到1000mg/L,根据式样要求传感器定制调节到某一段浓度范围)
精 度:±4% 测试范围
分 辨 率:0.001mg /L
分析时间:连续分析
响应时间:4分钟之内
检测极限:0.001mg /L
样品温度:1- 70℃
重复性误差:≤ 3%
电源要求/功能:220V
显 示 屏:彩色触摸屏
四.应用领域:
制水(纯化水、注射用水)的在线监测和实验室测试,以及清洁验证;环保测试、电子行业、食品行业等。
产品说明:
总有机碳(TOC)分析仪采用世界先进的双波长红外外氧化技术,精度高、灵敏度高。高性能CPU,触摸屏智能化控制,具有离线分析和在线分析选配功能,配制外置式打印机,人性化的设计理念,更换UV灯和泵管不用拆开机箱,操作简单、方便,实现了分析仪器国产化。符合《中国药典》2010版附录 VIII R制水中总有机碳测定法,满足药典对仪器的要求:①TOC=TC-TIC,②系统适用性试验,③检测灵敏度(等于或小于0.001mg/L)。
北京北广精仪仪器设备有限公司
仪器网(yiqi.com)--仪器行业网络宣传传媒