TOC水质总有机碳分析仪1、高精度、高灵敏度,操作简单。2、人性化操作界面,有一键运行功能,自动管路清洗功能。
3、高性能CPU,触摸屏设计,超大640*480点阵真彩显示器。
4、不用拆开机箱更换UV灯和泵管。
5、检测上限可设定,自动上限报警功能。
6、具有RS232数据接口,历史数据可存储6个月。
TOC水质总有机碳分析仪注射用水在线TOC分析仪1、检测制药工业中纯化水、注射用水和高纯水中总有机碳的浓度2、半导体行业、电厂、科研单位、制药行业、化工行业等超纯水TOC的检测3、在线监测制药工业的制水系统、半导体工业的超纯水制备系统和晶片工艺过程、电厂去离子水制备过程等检测上限可设定,自动上限报警功能。并且将传统的单向直流给水系统改变为串联循环方式。这些区别给用水系统流体动力条件的设计与安装带来了一系列意义深刻的变化:例如,为控制管道系统内微生物的滋留,减少微生物膜生长的可能性等。为此,美国对用水系统中的水流状态提出了明确的要求,希望工艺用水处于“湍流状态”下流动。这就需要通过对流体动力学特性的了解,来理解美国要求使用“湍流状态”概念的特殊意义。通常,流体的速度在管道内部横断面的各个具体点上是不一样的。流体在管道内部中心处,流速大;愈靠近管道的管壁,流速愈小;而在紧靠管壁处,由于流体质点附着于管道的内壁上,其流速等于零。工业上流体管道内部的流动速度,可供参考的有以下的经验数值:(1)普通液体在管道内部流动时大都选用小于3m/s的流速。智能化设计,能够自由判断液面位置避免空气抽入;自动取样器可与TOC分析仪配合使用,可在多样品分析时,自动实现样品定位合液位分析,使检测人员从枯燥的等待分析结果的过程中解脱出来。因而是无因次数。在计算之中,只要采用的单位一致,对于任何单位都可得到同样的数值。例如在米·千克—秒制中雷诺准数的单位为:dqρ/ц=(m)(m/s)(kg·s2/m4)/(kg·s/m2)=(m)0(kg)0(s0)式中所有单位全可消去,所剩下的为决定流体流动类型的数值。而采用尺-磅-秒英制时也能得到同样的结果。雷诺实验表明,当Re数值小于2300时,流体为滞流状态流动。Re数值若大于2300,流体流动的状态则开始转变为湍流。但应注意,由于物质的惯性存在,从滞流状转变为湍流状态并不是突然的,而是会经过一个过渡阶段,通常将这个过渡阶段称之为过渡流,其Re数值由2300到4000左右,有时可延到10000以上。模块化设计,核心部件均采用进口器件;用水贮存与分配系统的设计配管的坡度配管设计中应为管道的敷设考虑适当的坡度,以利于管道的排水。即管道在安装时必须考虑使所有管内的水都能排净。这个要求应作为设计参数确定在系统中。用水系统管道的排水坡度一般取1%或1cm/m。这个要求对纯化水和注射用水系统管道均适用。配管系统中如有积水,还必须设置积水排泄点和阀门。但应注意,排水点数量必须尽量少。配水管道参数的计算工艺过程用水的量是根据工艺过程、产品的性质、设备的性能和药厂所处地区的水资源情况等多种条件确定的。通过分析对每一个用水点注射用水的使用情况来确定。通常,工艺用水量的计算按照两种主要的用水情况进行。一种是根据单位时间工艺生产流程中某种耗水量设备为基础考虑。
所不同的是温度较低,时间较长,通常先将牛奶加热到80℃,停留一定时间,进行消毒,完成消毒后,将其冷却至常温即成为消毒牛奶。所采用的设备为多效巴氏消毒器,以节约能源。在多效消毒器中,效是用已消毒好的热牛奶对待消毒的冷牛奶通过热交换器进行预热;第二效是将已预热待消毒的牛奶加热至80℃并停留一段时间,完成对牛奶的消毒;第三效是用水将一效已回收能量的消毒牛奶进一步冷却至常温,然后出消毒器。 巴斯德消毒的另一个经常采用的部位是使用回路,即用80℃以上的热水循环1-2h,这种方法行之有效。采用这一消毒手段的纯化水系统,其微生物污染水平通常能有效地控制在低于50CFU/ml的水平。由于巴氏消毒能有效地控制系统的内源性微生物污染。一个前处理能力较好的水系统,细菌内则可控制在5EU/ml的水平。二、???臭氧消毒 在水处理系统中,水箱、交换柱以及各种过滤器、膜和管道,均会不断的滋生和繁殖细菌。消毒杀菌的方法虽然都提供了除去细菌和微生物的能力,但这些方法中没有哪一种能够在多级水处理系统中除去全部细菌及水溶性的有机污染。目前在高纯水系统中能连续去除细菌和病毒的好方法是用臭氧。1905年起,臭氧就开始用于水处理。它较用氯处理水优越,能除去水中的卤化物。此方法在国内水系统中的应用仅处于起步阶段。在国外,这种消毒方式已非常普遍,这是由于臭氧不会产生有害的残留物。使用臭氧消毒并在用水点前安装紫外灯减少臭氧残留,是用水系统、尤其是纯化水系统消毒的常用方法之一。(1)化学性质及功效 臭氧(O3)是氧的同素异形体,它是一种具有特殊气味的淡蓝色气体。分子结构呈三角形,键角为116°,其密度是氧气的1.5倍,在水中的溶解度是氧气的10倍。臭氧是一种强氧化剂,它在水中的氧化还原电位为2.07V,仅次于氟(2.5V),其氧化能力高于氯(1.36V)和二氧化氯(1.5V),能破坏分解细菌的细胞壁,很快地扩散透进细胞内,氧化分解细菌内部氧化葡萄糖所必须的葡萄糖氧化酶等,也可以直接与细菌、病毒发生作用,破坏细胞、核糖核酸(RNA),分解脱氧核糖核酸(DNA)、RNA、蛋白质、脂质类和多糖等大分子聚合物,使细菌的代谢和繁殖过程遭到破坏。细菌被臭氧是由细胞膜的断裂所致,这一过程被称为细胞消散,是由于细胞质在水中被粉碎引起的,在消散的条件下细胞不可能再生。应当指出,与次氯酸类消毒剂不同,臭氧的杀菌能力不受PH值变化和氨的影响,其杀菌能力比氯大600-3000倍,它的灭菌、消毒作用几乎是瞬时发生的,在水中臭氧浓度0.3-2mg/L时,0.5-1min内就可以致死细菌。达到相同灭菌效果(如使大肠杆菌杀灭率达99%)所需臭氧水量仅是氯的0.0048%。臭氧对酵母和寄生生物等也有活性,例如可以用它去除以下类型的微生物和病毒。①病毒?已经证明臭氧对病毒具有非常强的杀灭性,例如Poloi病毒在臭氧浓度为0.05-0.45mg/L时,2min就会失去活性。②孢囊?在臭氧浓度为0.3mg/L下作用2.4min就被完全除掉。③孢子?由于孢衣的保护,它比生长态菌的抗臭氧能力高出10-15倍。④真菌?白色(candidaalbicans)和青霉属菌(penicillium)能被杀灭。⑤寄生生物?曼森氏血吸虫(schistosoma?mansoni)在3min后被杀灭。此外,臭氧还可以氧化、分解水中的污染物,在水处理中对除嗅味、脱色、杀菌、去除酚、氰、铁、锰和降低COD、BOD等都具有显着的效果。应当注意,虽然臭氧是强氧化剂,但其氧化能力是有选择性的,像乙醇这种易被氧化的物质却不容易和臭氧作用。(2)臭氧的发生及常用浓度 臭氧的半衰期仅为30-60min。由于它不稳定、易分解,无法作为一般的产品贮存,因此需在现场制造。用空气制成臭氧的浓度一般为10-20mg/L,用氧气制成臭氧的浓度为20-40mg/L。含有1%-4%(质量比)臭氧的空气可用于水的消毒处理。 产生臭氧的方法是用干燥空气或干燥氧气作原料,通过放电法制得。另一个生产的臭氧的方法是电解法,将水电解变成氧元素,然后使其中的自由氧变成臭氧。使用电解系统生产臭氧的主要优点是: ①??没有离子污染; ②??待消毒处理的水是用来产生臭氧的原料,因此没有来自系统外部的其他污染; ③??臭氧在处理过程中一生成就被溶解,即可以用较少的设备进行臭氧处理。 若在加压条件下,可生产出较高浓度的臭氧。(3)残留臭氧去除法 经臭氧消毒处理过的水在投入生产前,应当将水中残存(过剩)的臭氧去除掉,以免影响产品质量。臭氧的残留量一般应控制在低于0.0005-0.5mg/L的水平。从理论说,去除或降低臭氧残留的方法有活性炭过滤、催化转换、热破坏、紫外线辐射等。然而在工艺应用广的方法只是以催化分解为基础的紫外线法。具体做法是在管道系统中的个用水点前安装一个紫外杀菌器,当开始用水或生产前,先打开紫外灯即可。晚上或周末不生产时,则可将紫外灯关闭。一般消除1mg/L臭氧残留所需的紫外线照射量为90000μW·s/cm2。????(4)注意事项 臭氧适用于水质及用水量比较稳定的系统,当其发生变化时应及时调整臭氧的用量。在实际生产中,及时进行调节有一定的困难。另一个须考虑的问题是水中有机物的含量,当水的混浊度小于5mg/L时,对臭氧消毒灭菌的效果影响极微,混浊度增大,影响消毒效果。如果有机物含量很高时,臭氧的消耗量将会升高,其消毒能力则下降,因为臭氧将首先消耗在有机物上,而不是杀灭细菌方面。因此,国外业在用水系统中增加了总机碳(TOC)的监控项目。但糟糕的是,在受到严重有机物污染的进水中用臭氧处理后,大的有机物分子会破裂成微生物的营养源,因此,在没有维持管网臭氧浓度的情况下,反会使得粘泥增多,进而使水质恶化。在许多方面,作为消毒剂的臭氧和,它们的优点是互补的。臭氧具有快速杀菌和灭活病毒的作用,对于除嗅、味和色度,一般都有好的效果。则具有持久、灵活、可控制的杀菌作用,在管网系统中可连续使用。所以臭氧和结合起来使用,看来是水系统消毒为理想的方式。三、???紫外线消毒(1)紫外线杀菌的机理及规则 紫外线杀菌的原理较为复杂,一般认为它与对生物体内代谢、遗传、变异等现象起着决定性作用的核酸相关。微生物病毒、噬菌体内都含有RNA和DNA,而RNA和DNA的共同特点是具有由磷酸二酯按照嘌呤与嘧啶碱基配对的原则相连的多核苷酸链,它对紫外光具有强烈的吸收作用并在260nm有大值吸收。在紫外光作用下,核酸的功能团发生变化,出现紫外损伤,当核酸吸收的能量达到细菌致死量而紫外光的照射又能保持一定时间时,细菌便大量死亡。 波长在200-300nm之间的紫外线有灭菌作用,其灭菌效果因波长而异,其中以254-257nm波段灭菌效果好。这是因为细菌中的脱氧核糖核酸(DNA)白的紫外吸收峰值正好在254-257nm之间。如将该波段紫外线的灭菌能力定为100%,再同其他波长紫外线的灭菌能力作比较,其结果如表3.1所示。由表可以看出,超过或低于254-257nm的紫外线,随波长的增加或减少,灭菌效果均急剧下降。表3.1?不同波长的紫外线灭菌能力波长/nm360400相对灭菌率/%0.250.40.630.911.01.00.990.870.60.50.060.0130.00030.0001 紫外线的灭菌效果同紫外线的照射量不成线,即被细菌的百分数并不是与照射剂量成正比的(紫外线照射量等于紫外线的辐照度值乘以时间)。只有在照射量很低而细菌数目又很多的时候,紫外线照射量才同细菌的死亡率呈线。当紫外线照射量加大后,每单位剂量的紫外线的增量,并不一定数目的细菌,而是当时还活着的细菌中间某一特定百分数的细菌。从这个意义上看,在紫外线杀菌过程中,微生物的死亡也遵循湿热灭菌的对数规则(参见中国附则)。 即?????????N/N0=e-KD式中?N0——紫外线照射前的细菌数目;e——紫外线照射后的细菌数目;D——紫外线剂量大小;K——常数。表3.2示出了紫外线不同照射量时的灭菌率。表中可清楚地看出,对不同细菌要达到同一灭菌率时,所需的紫外线照射量相差甚大。例如酵母菌要达到90%~100%的灭菌率时,需要紫外线照射量为14700μW·s/cm2。而大肠杆菌则需1550μW·s/cm2,二者相差10倍。表3.2???紫外线不同照射量时的灭菌率菌种紫外线照射量/(μW·s/cm2)紫外线波长/nm灭菌率/%大肠杆菌02080绿浓杆菌酵母菌00巨大杆菌42080霍乱菌不同种类的微生物在不同照射量下,被杀灭的程度各不相同。(2)紫外线杀菌装置 紫外线杀菌装置结构,由外壳、低压灯、石英套管及电气设施等组成。外壳由铝镁合金或不锈钢等材料制成,以不锈钢制品为好。其壳筒内壁要求有很高的光洁度,要求其对紫外线的反射率达85%左右。 紫外线杀菌灯为高强度低压灯,可放射出波长为253.7nm的紫外线,这种紫外线的辐射能量占灯管总辐射能量的80%以上,为保证杀菌效果,要求其紫外线照射量大于3000μW·s/cm2,灯管寿命一般不短于7000h。 紫外灯的灯管是石英套管,这是由于石英的污染系数小,耐高温,且石英套管对253.7nm的紫外线的透过率高达90%以上,但石英价格较贵,质脆、易破碎。 紫外线杀菌装置的电气设施包括电源显示、电压指示、灯管显示、报警、石英计时器及开关等。经验表明,使用紫外线灭菌时,由于长期使用紫外线,有可能使杀菌装置或其附近的非金属材料老化,使之降解,导致电阻率的改变。因此,对紫外杀菌器的质量要求主要有两点:一是高的杀灭率,一般要求大于99.9%;二是当纯水或高纯变化的水通过该装置后,电阻率降低值不得超过0.5MΩ·CM(25℃)。(3)紫外消毒的影响因素和注意事项 紫外线的强度、紫外线光谱波长和照射时间是紫外光线杀菌效果的决定因素。由于波长为253.7nm的紫外光线杀菌能力强,因此要求用于杀菌的紫外线灯的辐射光谱能量集中在253.7nm左右,以取得佳杀菌效果。 ①安装位置?紫外线杀菌器的安装位置一般离使用点越近越好,但也应留有从一端装进或抽出石英套管和更换灯管的操作空间。由于被的细菌污染纯水,因此要在紫外杀菌器后面安装过滤器,一般要求滤膜孔径≤0.45μm。 ②流量?当紫外杀菌器功率不变、水中微生物污染波动较小时,流量对杀菌效果有显着的影响,流量越大、流速越快,被紫外线照射的时间就越短;细菌被照射的时间缩短,被杀菌的概率也因而下降。如流量不变,源水中微生物污染水平高时,污染菌除去率也高,但出水中菌检合格率可能下降。 ③水的物理化学性质?水的色度、浊度、总铁含量对紫外光都有不同程度的吸收,其结果是降低杀菌效果。色度对紫外线透过率影响大,浊度次之,铁离子也有一定影响。紫外线杀菌器对水质的要求一般为:色度<15,浊度<5,总铁含量<0.3mg/L,细菌含量≤900个/ml。尽管中国收载的纯化水标准中没有微生物污染控制的项目和限度,但一般地说,上述条件均能满足。水的吸收系数越高,辐射强度就越弱,杀菌能力降低;由于光不能透过固体物质,故水中悬浮颗粒会降低紫外线的杀菌效率;水中钙镁离子对紫外线吸收很小,因此紫外灯灭菌特别适用于纯化水系统。 ④灯管功率?灯管实际点燃功率对杀菌效率影响很大。随着灯点燃时间的增加,灯的辐射能量随之降低,杀菌效果亦下降。试验证明,1000W的紫外线灯点燃1000h后,其辐射能量将降低40%左右。此外,还应注意保持稳定的供电电压,以保证获得所需要的紫外线能量。 如上所述,随着时间的推移,紫外灯的功率会逐渐减弱,一般低于原功率的70%即应更换。现国外使用的紫外灯均带功率显示器,不需要人工对使用时间进行累计和计算。当使用不带功率显示器紫外灯时,应以适当方式记录紫外灯的累计工作时间,以防止灯管超过使用期而影响用水系统的正常运行。 ⑤灯管周围的介质温度?紫外线灯管辐射光谱能量与灯管管壁的温度有关。当灯管周围的介质温度很低时,辐射能量降低,影响杀菌效果。当灯管直接与低温的水接触时,杀菌效果很差。若灯管周围的介质温度接近0℃时,紫外线灯则难以起动并进入正常杀菌状态。若以灯管表面温度40℃时的杀菌效率定为100%,32℃及52℃时的效率则只有85%左右,所以通常将紫外灯管安置在一个开口的石英套管内,以便使灯管与套管之间形成环状空气夹层,这样,既可及时散发掉灯管本身的热量,又可避免低温水对紫外灯管发光功能的影响,并使其周围的温度保持在25-35℃左右的佳运行状态。 ⑥石英套管?石英套管的质量和壁厚与紫外线的透过率有关,石英材料的纯度高,透过紫外线的性能好。使用过程中应定期将套管抽出,用无水乙醇擦拭,以保持石英套管清洁状态。通常,清洁频率为每年至少1次。 紫外线杀菌灯好长期连续运行,在进行杀菌前,应预热10-30min。应尽量减少灯的启闭次数,灯每开关1次,将减少3h的使用寿命。另外要求网路电压稳定,波动范围不得超过额定电压的5%,否则应安装稳压器。 应当注意,水层的厚度同紫外线杀菌效果有很大关系。例如,对于水流速度不超过250L/h的管路,以30W的低压灯对1cm厚的水层灭菌时,灭菌效率可达90%;对2cm厚的水层的灭菌效率在73%;对3cm厚的水层灭菌效率为56%;对4cm厚的水层则下降到40%。因此,在上述流速条件下,紫外线有效灭菌水层厚度不超过2.2cm。如果水中含有芽胞细菌,水层厚度应减少至1.4cm,水的流速减少至90L/h。如果水中含有泥砂污物,则有效水层厚度还应下降,水流速度亦减小。否则就达不到预期的灭菌效果。
流体质点间的运动迹线极其而流线很易改变的流动称为紊流或湍状流动,简称湍流。当流体处于湍流状态时,曲线形状与抛物线相似,但顶端稍宽。由于在湍流中流体质点的相互撞碰,其流速在大小和方向上均时有变化,并趋向于一个平均值。因此,湍流的状态愈明显,其曲线的顶端愈平坦,当处于十分稳定的湍流状态时,其平均速度为管中心大速度的0.8~0.9倍左右。按照上述对流速在管道内部分布的描述可知,即使流体确为湍流,其接近管壁处仍可能存在一层滞流的边界层。这个边界层实际上包括真正的滞流层与过渡层。在真正的滞流层中,流体速度近似地成直线下降,到管壁处速度趋于零。过渡层则介乎真正滞流层与流体主体之间。边界层的厚度为Re数的函数。
制药用水(纯化水、注射用水)的在线检测和实验测试,以及清洁证;
用水设备装置的设计、选型以及安装都必须符合企业用水要求,装置的设计安装必须易于清洗、消毒,与此同时,还要便于制水操作以及装置维修、保养等。超纯水设备所使用的化学千万不能够对以及装置产生污染。与设备相互连接的主要固定管道应标明管内物料名称。用水设备必须有着明显的运行状态标志,并且装置一定要进行日常的维修、保养以及验证。超纯水设备的安装、养护、维修等操作流程都不可以影响到终的出水质量,装置在运行过程中,维修,维护保养都需要专人管理,同时要做好数据记录,出现故障查明原因,并及时解决,保证不影响生产效率与质量。
υ——沿着水流方向,局部阻力下游的流速;g——重力加速度,m/s2。在工艺用水系统管道局部阻力计算时,通常可不进行详细的计算,而采用沿程阻力损失的百分数,常取值为20%。③管道接头阻力损失管接头的阻力损失取决于其大小和类型,用ξ值计算。管道接头阻力系数如表5.表5.1管接头的阻力损失管径/mm203250≤63管接头类型阻力系数ξ圆弧弯头1.51.00.60.590°弯头2.01.71.10.845°弯头0.3T型接头1.5入口0.5出口1.0④管道中的压力损失,有下列两种公式:Σ△р=Σ△рy+Σ△рfi+Σ△рva式中р——总管道的阻力;рy——管道的沿程阻力;рfi——管接头的阻力;рva——阀门阻力。
在使用、贮存和更换过程中不需要气体或试剂,无移动部件,减少维修和维护成本。
取样方式: 自动模式、手动模式、被动模式
性能规格:不用拆开机箱更换UV灯和泵管。分 辨 率:0.001mg /L显 示 屏:彩色触摸屏
以上就是关于用水设备装置设计安装要求的全部介绍,用水设备的出水不单单能够应用在制造领域上面,还能够应用于仪器、仪表、量具、衡器的清洗上。所以用水设备的应用是非常广泛了,对于用水设备小编建议大家了解一下用水设备核心配置功能。
再根据工艺过程中的大瞬时用水量进行计算。工艺过程中大用水量的标准,根据生产的全年产量,按照具体每一天分时用水量的统计情况来确定,确定用水量的过程中应考虑所设置的工艺用水贮罐的调节能力。2.2系统设计流量的确定设计工艺用水管道,需要通过水力计算确定管道的直径和水的阻力损失。其主要的设计依据就是工艺管道所通过的设计秒流量数值。设计秒流量值的确定需要考虑工艺用水量的实际情况、用水量的变化以及影响的因素等。通常,按照全部用水点同时使用确定流量。按照生产线内用水设备的完善程度,设计的秒流量为:q=Σnqmaxc式中q——工艺因素的设计秒流量,m3/s;n——用水点与用水设备的数据;qmax——用水点的大出水量。
因而只有当Re等于或大于10000时,才能得到稳定的湍流。由滞流变为湍流的状况称为临界状况,一般都以2300为Re的临界值。须注意,这个临界值系与许多条件有关,特别是流体的进入情况,管壁的粗糙度等。由此可见,在用水系统中,如果只讲管道内部水的流动,尚不足以强调构成控制微生物污染的必要条件,只有当水流过程的雷诺数Re达到10000,真正形成了稳定的湍流时,才能够有效地造成不利于微生物生长的水流环境条件。由于微生物的分子量要比水分子量大得多,即使管壁处的流速为零,如果已经形成了稳定的湍流,水中的微生物便处在无法滞留的环境条件中。相反,如果在用水系统的设计和安装过程中,没有对水系统的设计及建造细节加以特别的关注。
测试要点:
①先将水样加酸酸化至pH值小于2,通入氮气曝气,使无机碳酸盐转变为二氧化碳并被完全吹脱。
②邻苯二甲酸氢钾作为水中有机物的标准试剂,通常要求先配制成浓度为400mg/L(以C计)的储备液。
③由标准储备液逐级稀释配制不同浓度的有机物标准系列溶液,注人燃烧管,根据吸收峰高与对应浓度的关系,绘制标准工作曲线
1. 载气Ⅰ通过压力调节器后与来自注射泵的试剂、来自注射泵及分配阀的水样混合后共同进入搅动环路,并进行充分的酸化反应。水样中的无机碳在磷酸的作用下转化成二氧化碳气体然后从气/液分离器口逸出。水样中的有机碳与试剂中的过硫酸钠进入反应器。在紫外光和过硫酸钠的氧化作用下,有机碳转化成二氧化碳气体。
2. 载气Ⅱ通过流量计进入反应器,带动二氧化碳气体进入冷凝器。冷凝后的二氧化碳气体进入电子制冷器进一步降温至6℃,从而达到气/水分离的目的,消除水分对测定值的影响。
3. 滤去二氧化碳气体中可能存在的固体微粒和干扰离子后进入NDIR进行浓度测量。
4. NDIR输出与二氧化碳气体浓度相对应的模拟信号;经AD变换后,这个信号被CPU采集并处理,显示出水样的TOC总量值。
具有打印功能
主要配置
主机 一台
触摸屏 (镶嵌到仪器中)
微型打印机 一台
进样管 一条
电源线 一套
产品说明书 一份
产品合格证 一份
产品装箱单 一份
北京北广精仪仪器设备有限公司
仪器网(yiqi.com)--仪器行业网络宣传传媒