产品介绍:
荧光光纤氧气测量技术具有高精确度、高可靠性、响应时间短、适用于气相和液相等优势,因此随着技术的问世,精确、高通量测量微小生物的呼吸和评估其能量代谢成为可能。高通量呼吸测量系统基于荧光光纤氧气测量技术,能够对果蝇等微小型昆虫、虫卵、蛹、线虫、土壤动物等微小型无脊椎动物进行测量,测定其耗氧量,进而评估其代谢水平。系统在昆虫生理生态学、比较生物学、实验生物学、污染生态学与环境毒理学、环境科学、气候变化研究等领域具有越来越重要的应用价值。
果蝇卵、幼虫、蛹、成虫的耗氧率测定
左图:果蝇卵、幼虫、蛹耗氧率的比较;右图:果蝇成虫耗氧率(麻醉处理VS对照)
系统由内置荧光光纤氧气传感器的微型呼吸室、氧气测量主机及数据采集分析软件组成,可对96个通道的样品进行同步测量。
功能特点
· 氧气测量高精度、高可靠性、低功耗、低交叉敏感性、快速响应时间
· 轻松校准
· 非侵入性和非破坏性测量
· 紧凑设计,适用于温控培养箱和/或摇床
· 气体氧和溶解氧均可测量
技术参数
1. 检测技术:光纤氧传感器技术。
2. 适用场景:原位检测,可在培养箱里或摇床上使用,便于温度控制。
3. 呼吸室:透明聚苯乙烯材质,支持预消毒处理,可重复使用。
4. 氧气测量主机:单个重670 g,162 x 102 x 32 mm
5. 主机内置温度传感器:0-50°C,分辨率0.012°C,精度±0.5°C
6. 主机内置压强传感器:300-1100mbar,分辨率0.11mbar,精度±6mbar
7. 蕞大采样频率:单通道激活时可达10-20次每秒
8. 氧气测量精度:±0.1% O2@1% O2或±0.05 mg/L@0.44 mg/L
9. 氧气测量分辨率:0.01% O2@1% O2或0.005 mg/L@0.44 mg/L
10. 电源:5VDC,USB供电
11. 响应时间<30s
12. 通道数:96
左图:封闭呼吸室中的苜蓿切叶蜂子脾和蛹;右图:高通量呼吸系统和传统呼吸测量法的结果比较
苜蓿切叶蜂耗氧率(V̇O2)随温度的变化曲线
参考文献
1. Clavé, C., Sugio, A., Morlière, S., Pincebourde, S., Simon, J.-C., Foray, V., 2022. Physiological costs of facultative endosymbionts in aphids assessed from energy metabolism. Functional Ecology 36, 2580–2592.
2. Earls, K.N., Campbell, J.B., Rinehart, J.P., Greenlee, K.J., 2023. Effects of temperature on metabolic rate during metamorphosis in the alfalfa leafcutting bee. Biology Open 12, bio060213.
3. Owen, C.A., Coetzee, J.A., Van Noort, S., Austin, A.D., 2017. Assessing the morphological and physiological adaptations of the parasitoid wasp E chthrodesis lamorali for survival in an intertidal environment. Physiol. Entomol 42, 173–180.
4. Uno, H., Stillman, J.H., 2020. Lifetime eurythermy by seasonally matched thermal performance of developmental stages in an annual aquatic insect. Oecologia 192, 647–656.
5. Glass, B.H., Jones, K.G., Ye, A.C., Dworetzky, A.G., Barott, K.L., 2023. Acute heat priming promotes short-term climate resilience of early life stages in a model sea anemone. PeerJ 11, e16574.
6. Göpel, T., Burggren, W.W., 2024. Temperature and hypoxia trigger developmental phenotypic plasticity of cardiorespiratory physiology and growth in the parthenogenetic marbled crayfish, Procambarus virginalis Lyko, 2017. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 288, 111562.
7. Kämmer, N., Reimann, T., Ovcharova, V., Braunbeck, T., 2023. A novel automated method for the simultaneous detection of breathing frequency and amplitude in zebrafish (Danio rerio) embryos and larvae. Aquatic Toxicology 258, 106493.
8. Karlsson, K., Søreide, J.E., 2023. Linking the metabolic rate of individuals to species ecology and life history in key Arctic copepods. Mar Biol 170, 156.
9. Mathiron, A.G.E., Gallego, G., Silvestre, F., 2023. Early-life exposure to permethrin affects phenotypic traits in both larval and adult mangrove rivulus Kryptolebias marmoratus. Aquatic Toxicology 259, 106543.
10. Pettersen, A.K., Metcalfe, N.B., Seebacher, F., 2024. Intergenerational plasticity aligns with temperature-dependent selection on offspring metabolic rates. Philosophical Transactions of the Royal Society B: Biological Sciences 379, 20220496.
北京易科泰生态技术有限公司
仪器网(yiqi.com)--仪器行业网络宣传传媒