AquaPen手持式藻类荧光测量仪
AquaPen AP110手持式藻类荧光测量仪是一款用于快速、精确测量水体藻类与蓝藻叶绿素荧光参数的手持式荧光仪。AquaPen有两种探头型号。AP110-C配备比色杯试管测量室,将要测量的水体、悬浊液或培养溶液采集到比色杯中进行测量,配备455nm蓝色和620nmLED红色光源,既可以测量叶绿素荧光,又可以测量680nm和720nm光密度。AP110-P配备了浸入式光学探头,可直接插到要测量的水体、悬浊液或培养溶液中进行测量,也可测量大型藻类。
AquaPen 具备极高的敏感度,可检测ZD0.5μg Chl/L的叶绿素荧光,可以检测浮游植物浓度极低的自然水体,可用于野外和实验室测量。
AquaPen采用调试式荧光测量技术,可设置多种参数,方便测量多种植物叶绿素荧光。外观小巧,方便携带,设计新颖,操作简单,经济耐用,精度高稳定性好。
应用领域
·藻类、蓝藻光合特性研究
·水体藻类含量检测
·光合突变体筛选与表型研究
·生物和非生物胁迫的检测
·藻类抗胁迫能力或者易感性研究
·经济藻类育种、病害检测、长势与产量评估
教学
功能特点:
§结构紧凑、便携性强,LED光源、检测器、控制单元集成于仅手机大小的仪器内,重量仅290g
§功能强大,是叶绿素荧光技术的高端结晶产品,具备了大型荧光仪的所有功能,可以测量所有叶绿素荧光参数
§内置了所有通用叶绿素荧光分析实验程序,包括两套荧光淬灭分析程序、3套光响应曲线程序、OJIP–test等
§ 高时间分辨率,可达10万次每秒,自动绘出OJIP曲线并给出26个OJIP–test参数
§AquaPen两种探头型号:比色杯试管测量室,既可以测量叶绿素荧光,又可以测量680nm和720nm光密度;浸入式光学探头,可直接插到要测量的水体、悬浊液或培养溶液中进行测量,也可测量大型藻类
§FluorPen专业软件功能强大,可下载、展示叶绿素荧光参数图表,也可以通过软件直接控制仪器进行测量
§具备无人值守自动监测功能
§内置蓝牙与USB双通讯模块, GPS模块,输出带时间戳和地理位置的叶绿素荧光参数图表
§可选配水下自动监测式荧光仪,防水防尘设计,ZD深度10m
测量程序与功能
·Ft:瞬时叶绿素荧光,暗适应完成后Ft=F0
·QY:量子产额,表示光系统II 的效率,等于Fv/Fm(暗适应状态)或ΦPSII (光适应状态)。
·OJIP:快速荧光动力学曲线,用于研究植物暗适应后的快速荧光动态变化
·NPQ:荧光淬灭动力学曲线,用于研究植物从暗适应到光适应状态的荧光淬灭变化过程。
·LC:光响应曲线,用于研究植物对不同光强的荧光淬灭反应。
·OD:光密度,反映藻类密度(限AP110-C)。
技术参数
测量参数包括F0、Ft、Fm、Fm’、QY、QY_Ln、QY_Dn、NPQ、Qp、Rfd、Area、Mo、Sm、PI、ABS/RC等50多个叶绿素荧光参数,OD680和OD720(限AP110-C)及3种给光程序的光响应曲线、3种荧光淬灭曲线、OJIP曲线等
OJIP–test时间分辨率为10µs(每秒10万次),给出OJIP曲线和26个参数,包括F0、Fj、Fi、Fm、Fv、Vj、Vi、Fm/F0、Fv/F0、Fv/Fm、Mo、Area、Fix Area、Sm、Ss、N、Phi_Po、Psi_o、Phi_Eo、Phi–Do、Phi_Pav、PI_Abs、ABS/RC、TRo/RC、ETo/RC、DIo/RC等
测量程序:Ft、QY、OJIP、NPQ1、NPQ2、NPQ3、LC1、LC2、LC3、OD680和OD720(限AP110-C)、Multi无人值守自动监测
测量光:每测量脉冲ZD光强0.09µmol(photons)/m².s,10-100%可调
光化学光:10–1000µmol(photons)/m².s可调
饱和光:ZD光强3000µmol(photons)/m².s,11-100%可调
探头型号:AP110-C试管式、AP110-P探头式
光源:AP110-C:620nm红光和455nm蓝光测量叶绿素荧光,680nm和720nm红外光测量OD;AP110-P:455nm蓝光
试管容积(限AP110-C):4ml
叶绿素荧光检测限:0.5μg Chl/L
检测器:PIN光电二极管,667–750nm滤波器
尺寸大小:超便携,手机大小,165×65×55mm(不包括探头),重量仅290g
数据存储:容量16Mb,可存储149000数据点
显示与操作:图形化显示,双键操作,待机5分钟自动关闭
供电:2000mA可充电锂电池,USB充电,可连续工作48小时,低电报警
工作条件:0–55℃,0–95%相对湿度(无凝结水)
存贮条件:-10–60℃,0–95%相对湿度(无凝结水)
通讯方式:蓝牙+USB双通讯模式,蓝牙在20m距离ZD传输速度3Mbps
GPS模块:内置,ZG精度1.5m
软件:FluorPen1.1专用软件,用于数据下载、分析和图表显示,输出Excel数据文件及荧光动力学曲线图,适用于Windows 7及更高操作系统
操作软件与实验结果
南极Mendel站使用AquaPen叶绿素荧光仪监测南极温度升高对地衣/藻类的影响
产地: 欧洲
参考文献
1.Zhang, C., Huang, X., Chu, Y., Ren, N. & Ho, S.-H. An overlooked effect induced by surface modification: different molecular response of Chlorella pyrenoidosa to graphitized and oxidized nanodiamonds. Environ. Sci.: Nano 10.1039.D0EN00444H (2020)
2.Arakaki, A. et al. Analysis of UV irradiation-induced cell settling of an oleaginous diatom, Fistulifera solaris, for efficient biomass recovery. Algal Research 47, 101834 (2020)
3.Contreras, J. A. & Gillard, J. T. F. Asparagine-based production of hydrogen peroxide triggers cell death in the diatom Phaeodactylum tricornutum. Botany Letters 1–12 (2020)
4.Moraes, L. et al. Bioprocess strategies for enhancing the outdoor production of Nannochloropsis gaditana: an evaluation of the effects of pH on culture performance in tubular photobioreactors. Bioprocess Biosyst Eng (2020)
5.Yaisamlee, C. & Sirikhachornkit, A. Characterization of Chlamydomonas Very High Light-tolerant Mutants for Enhanced Lipid Production. J. Oleo Sci. 69, 359–368 (2020)
6.Xu, M. et al. Co-culturing microalgae with endophytic bacteria increases nutrient removal efficiency for biogas purification. Bioresource Technology 314, 123766 (2020).
7.González-Camejo, J., Barat, R., Aguado, D. & Ferrer, J. Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor. Water Research 169, 115238 (2020).
8.Deng, X. et al. Cultivation of Chlorella sorokiniana using wastewaters from different processing units of the silk industry for enhancing biomass production and nutrient removal. J Chem Technol Biotechnol 95, 264–273 (2020).
9.Tiwari, S., Verma, N., Prasad, S. M. & Singh, V. P. Cytokinin alleviates cypermethrin toxicity in Nostoc muscorum by involving nitric oxide: Regulation of exopolysaccharides secretion, PS II photochemistry and reactive oxygen species homeostasis. Chemosphere 259, 127356 (2020).
10.Wu, Y., Zhang, M., Li, Z., Xu, J. & Beardall, J. Differential Responses of Growth and Photochemical Performance of Marine Diatoms to Ocean Warming and High Light Irradiance. Photochem Photobiol php.13268 (2020)
11.Abiusi, F., Wijffels, R. H. & Janssen, M. Doubling of microalgae productivity by oxygen balanced mixotrophy. ACS Sustainable Chemistry & Engineering 8, 6065–6074 (2020).
12.Rolton, A. et al. Early biomarker indicators of health in two commercially produced microalgal species important for aquaculture. Aquaculture 521, 735053 (2020).
13.Shen, X. et al. Effect of GR24 concentrations on biogas upgrade and nutrient removal by microalgae-based technology. Bioresource Technology 312, 123563 (2020).
14.Zhu, Q. et al. Effects of ambient temperature on the redistribution efficiency of nutrients by desert cyanobacteria- Scytonema javanicum. Science of The Total Environment 737, 139733 (2020).
15.Marticorena, P., Gonzalez, L., Riquelme, C. & Silva Aciares, F. Effects of beneficial bacteria on biomass, photosynthetic parameters and cell composition of the microalga Muriellopsis sp. adapted to grow in seawater. Aquac Res are.14711 (2020)
北京易科泰生态技术有限公司
仪器网(yiqi.com)--仪器行业网络宣传传媒