高雷诺数条件下水翼艇的流体力学特性测试
2008-02-20514
文件大小:82.84KB
建议WIFI下载,土豪忽略
方案优势
Lifting surfaces are used both for propulsion and control of sea vessels and must meet performance criteria such as lift, drag, and (in some military applications)hydroacoustic noise limits. Design tools suitable to predict such criteria must handle complex flow phenomena and manage the wide range of flow scales inherent in marine
applications (Reynolds numbers ~108). To date, the development of such tools has been limited by the lack of controlled experimental data in this high Reynolds numbers range.
Lifting surface flow is the focus of current high Reynolds number experiments involving a two-dimensional hydrofoil in the worlds largest water tunnel, the US Navys William B. Morgan Large Cavitation Channel (LCC). The goal of these experiments is
to provide a unique high Reynolds number experimental dataset at chord-based Reynolds numbers (Re) approaching those of full-scale propulsors (~108). This data will be used for validation of sca领 laws and computational models, with particular emphasis given
to the unsteady, separated, turbulent flow at the trai领 edge. In addition, these experiments will provide fundamental insight into the fluid mechanics of trai领-edge noise generation in marine propulsion systems.
This paper describes the experimental equipment and methods employed in the test program. Described herein is the use of the LCCs Laser Doppler Velocimetry (LDV) capability to acquire flow velocity mean and turbulence quantities, as well as estimates of boundary layer transition. Also presented is a Particle Imaging Velocimetry
(PIV) system developed for these experiments and employing seed injection upstream of the channels flow straightener. Finally, a description is given of instrumentation mounted in the foil for measurement of vibration and surface static and dynamic pressures. 德国LaVision PIV/PLIF粒子成像测速场仪 Imager pro X PIV相机 用于粒子成像测速(PIV)的荧光示踪粒子
相关产品
选购仪器 上yiqi.com
仪器网络推广
品牌网上传播
长按识别二维码查看信息详情