针尖增强拉曼光谱(TERS)为何总是如此“耀眼”
2016-06-15918在成功实现针尖增强拉曼光谱(TERS)技术的15年后,HORIBA Scientific 和 AIST-NT 合作完成了 TERS 的整套解决方案,将其推向了一个全新的层面。TERS 技术不只是进行所谓的单点测量,更能够完成一个 TERS 扫描成像,收集到成千上万个像素点的拉曼光谱,而且一个完整成像采集时间一般小于10分钟。
文中我们采用了HORIBA & AIST 的 Nano Raman 团队在2015年获得的结果,来展示TERS在纳米尺度上的化学成像,并由HORIBA Scientific的产品经理Marc Chaigneau 博士进行了讲解。
图1采用XploRA Nano系统和镀金的TERS针尖,对单根碳纳米管进行纳米级的化学成像,其空间分辨率达到了8nm。扫描发现在绿色区域D峰(缺陷峰)产生明显的增强,该位置的空间分辨已经接近晶格缺陷尺寸(扫描步长为1.3nm)。“TERS的空间分辨率获得如此惊人的进步主要归功于NanoRaman系统光学耦合部件的稳定性和SmartSPM型号AFM的高频扫描器,能够远离噪声的干扰。”
图1:单个碳纳米管的TERS成像,空间分辨率小至8nm, 1.3nm步长(75×75点,每点采集时间为100ms)
从氧化石墨烯的TERS成像中发现,其褶皱位置与镀银的AFM-TERS针尖具有很强的相互作用,见图2(绿色:G峰强度分布,红色:有机物残留的C-H振动峰强度分布)。与普通远场拉曼信号相比,针尖将信号增强了大概2×106倍。并且通过进一步计算D/G的强度分布,可以表征样品上缺陷的局部变化。“这么好的拉曼增果要归功于Ag针尖的强等离子体共振;而且好消息是,由于保护层的加入,Ag针尖的寿命已经延长到了数周。”
图2 左:氧化石墨烯D峰的TERS成像 右:褶皱位置(红色和蓝色)、平坦位置(绿色)和薄片外的单点TERS谱图
脉冲力刻蚀技术” (NanoRaman系统的一种纳米刻蚀模式)可以利用单晶金刚石针尖在单层氧化石墨烯上点压出所需的图案。我们在氧化石墨烯表面压印出了15nm尺寸大小的“TERS”字母,并发现在刻划位置的TERS信号显著增强。“得益于SmartSPM针尖调谐和准直的全自动化,使得我们即使在进行纳米刻蚀后更换为TERS针尖,也能够找到原来的测试区域。”
图3:金膜上单层氧化石墨烯刻蚀字图的D峰强度TERS成像,尺度15nm
为了将TERS应用于其他2D材料,应用团队对机械剥离的MoS2样品进行了TERS成像。从中发现,使用AFM-TERS针尖,MoS2的A1g和A2u振动模式强度有明显的提升(图4),而且采用DualSpec模式,能够采集到近场信号和远场信号并进行差谱处理。 “同样,由于AFM-TERS针尖的不断发展,尤其是镀银针尖,为新一代2D材料的TERS表征打开了一扇门。高增强因子使之前难以观察到的纳米尺度的拉曼振动模式变得清晰可见,同时DualSpec模式可以帮助我们完成每一个点的远场信号扣除。”
图4 左:MoS2 408cm-1拉曼峰(A1g模式)的TERS成像 右:边缘及刚脱离边缘位置的TERS图谱
图5展示了沉积在金基底上C60和C70富勒烯的TERS成像,并清晰地表现出某些位置具有单一的C60或C70的拉曼谱图。与单层的C70富勒烯区域的TERS成像对比,我们能够进一步确认在大气环境中完成了AFM模式下的单分子测试。“单分子灵敏度是每一个光谱学家的目标!之前单分子的TERS检测已经在超高真空超低温的STM设备上实现了,但是如果TERS要成为一种大众化的检测技术,整套设备的安装和操作必须简单,成本也必须降低。由此来看,我们的应用团队在大气环境中得到了清晰地单分子测试结果,意义是非常大的。”
图5:左:沉淀在金膜上的氧化石墨烯以及C60、C70富勒烯的TERS成像(每行128点,采集时间:每点80毫秒)。右: C60和C70混合位置谱图(绿色)以及单一成分的谱图(蓝色-C60,红色-C70)