Stevens’Hydra Probe II Soil Sensor比其他的土壤传感器有独厚的优势,可以同时原位高精度测量水分、电导率和温度。该款土壤传感器可以为研究应用领域提供水分、电导率和温度数据,同时它也提供原始电压和复杂的介电常数。该款传感器给土壤管理提供了科学的数据。
测量参数 土壤容积含水量(θ) 电导率(ECb) 温度
测量单位 vol% (m3/m3) S/m 摄氏度
测量范围 0~100% 0.01~15 -10 to +55
精 度 非饱和范围内为±2% ±8% ±0.1
工作电流 测量期间:30mA;休眠期间:< 10mA
供电电压 9~20VDC
输出信号 RS485数字接口
电缆长度 采用RS485可延长到1219m
电极材料 不锈钢
物理尺寸
1、长: 4.9 in (12.4 cm)
直径: 1.6 in (4.2 cm)
2、传感器(圆柱区域)
长: 2.2 in (5.7 cm)
直径: 1.2 in (3.0 cm)
3、重: 200 g (电缆: 0.08 kg/m)
土壤水分盐分温度传感器原理:
Hydra Probe 独有的测量方法使得与其他传感器相比在多数土壤中更精确和可靠,电子土壤传感器土壤水分校准曲线基于他们复合介电常数(Topp 1980)。
复合介电常数是一种材料在电场中产生感应电荷的能力。当电磁波通过土壤传导,部分能量被储存,而另一部分能量损耗,散失的能量和储存的能量之间的数学关系也不是一成不变的。
反映储能部分或者电容特性的的实部,和水的转动偶极矩直接相关(Logsdon 2005,Seyfried 2004),这一原理被用于土壤水分的测量。虚部代表能量的损耗,包括电导率、频率、分子松弛等(Hilhorst 2000)。
表观介电常数是包含了实部和虚部的一个电介质复数介电常数(Jones 2005,Seyfried 2007)。除了Hydra Probe之外,多数传感器都采用了诸如TDR(Blonquist 2005),TDT(Blonquist 2005B),RF共振频率电容法(Kelleners 2004)以及SIP简化阻抗探针法(Gaskin 1996),以上测量方法全部基于表观介电常数。介电常数的虚部对于温度、频率、土壤含盐量和土壤质地等条件非常敏感,因而包含了介电常数虚部特征的表观介电常数,对于温度、频率、土壤含盐量和土壤质地同样也是敏感的(Blonquist 2005)。
鉴于多数土壤传感器对土壤水分的计算都是基于表观介电常数,并不是真正的实际介电常数(实部),所以这些传感器受土壤温度、盐分、质地的严重影响。相比之下,Hydra Probe 受土壤条件的影响就很小。
Hydra Probe是一种介电阻抗传感器,它采用的是一种利用同轴波导将实部和虚部wan美剥离的方法(Campbell 1990)。通过一个发射信号和两个反射信号,由于介电常数的实部和虚部对应的两个反射信号的阻抗不同,通过一个麦克斯韦方程组数学模型被分别计算(Campbell 1988,Kraft 1987)。这些复杂的数学计算是由一个内置在Hydra Probe壳内的微处理器来完成的。
传感器校准
如前边介绍的,Hydra Probe的校准基于实际介电常数,而非其他传感器所使用的表观介电常数,因此它比其他传感器更精确可靠。LOAM壤土校准是Hydra Probe 进行的最主要的土壤校准,适合多数的土壤测量。LOAM壤土的校准基于美国农业部M.S. Seyfried的研究(Seyfried 2005)。20种代表不同的质地、形态和矿质含量的一系列土壤经过研究,为土壤水分测量提供**校准曲线。
同时,Hydra Probe 还进行了沙土、粘土、亚粘土的校准;如果需要,客户也可以根据自己使用的特殊区域要求,自行校准。
广州慧洋信息科技有限公司
仪器网(yiqi.com)--仪器行业网络宣传传媒