太赫兹近场光学显微镜-THz-NeaSNOM
--30nm光学信号空间分辨率
太赫兹(THz)光源波长较大,一般在300微米左右。由于衍射极限的存在,THz远场测量系统的光学空间分辨率一般被限制在150微米左右。该THz光远场测量结果的准确度经常无法满足对材料科学研究,尤其是需要纳米分辨率的微细尺度材料分布研究(例如半导体芯片中各个组成:源极,漏极,栅极)的实验。THz-NeaSNOM近场光学显微镜的出现为此难题提供了一个很好的解决方案。
德国neaspec公司与Fraunhofer IPM在neaspec公司neaSNOM近场光学显微镜的基础上,已经成功研发了一套易用使用且THz系统的空间分辨率达到30nm的实验设备。
产品特点/基本参数
+ 优于30nm的空间分辨率
+ 常用THz光范围:0.1-3THz
+ ZG设计的宽波段抛面镜
+ THz研究可使用商业化的AFM探针
+ THz-TDS使用飞秒激光光源
+ 简单易用,稳定性高
应用案例
THz-NeaSNOM 30nm空间分辨率
THz-NeaSNOM近场光学显微镜(下图左)对半导体结构的测量结果图。
该结果表明硅衬底(上图左,灰色)上的SiO(一氧化硅)的尺寸大约在1.5×1 平 方微米。通过分析左侧的高度数据,可以知道该一氧化硅结构仅仅只有大约22纳米厚度。虽然该层状结构非常薄,但THz-NeaSNOM近场光学显微镜(下图左)在测量高度的同时仍然能够记录该结构与衬底的近场光学信号的明显不同衬度的结果。该THz-NeaSNOM近场光学显微镜不仅在测量非常薄样品的时 候灵敏度非常高,而且通过分析近场光学信号数据(下图右)也证实了它超高的空间分辨率(~25-30nm)。
表征半导体器件 Nature 456,454(2008) 超快机制研究纳米线 Nature Photonics 8,841(2014)
测试数据
表征半导体器件 Nature 456,454(2008)
超快机制研究纳米线 Nature Photonics 8,841(2014)
部分用户好评与列表(排名不分先后)
neaspec公司产品以其稳定的性能、极高的空间分辨率和良好的用户体验,得到了国内外众多科学家的认可和肯定......
"The neaSNOM microscope with it’s imaging and nano-FTIR mode is the most useful research instrument in years, bringing genuinely new insights." Prof. Dmitri Basov 美国 加州大学 University of California San Diego Department of Physics La Jolla, USA | |
"We were looking for a flexible research tool capable of characterizing our energy storage materials at the nanoscale. neaSNOM proofed to be the system with the highest spatial resolution in infrared imaging and spectroscopy and brings us substantial new insights for our research” Dr. Jaroslaw Syzdek 美国 劳伦斯伯克利国家实验室 Lawrence Berkeley National Laboratory Environmental Energy Technologies Division Berkeley, USA | |
"The neaSNOM microscope boosted my research in plasmonic properties of noble metal nanocrystals, optical resonances of dielectric nanostructures, and plasmon polaritons of graphene-like two dimensional nanomaterials." 陈焕君 教授 ZG 中山大学 Sun Yat-sen University China | |
"As a near-field expert I was quickly convinced that neaSNOM is the only optical AFM microscope completely satisfying the needs of demanding near-field experiments. It’s the best comercially available technology and in addition really easy to use." Prof. Thomas Taubner 德国 亚琛工业大学 RWTH Aachen Metamaterials & Nano-Optics Aachen, Germany | |
"As a newcomer to the near-field optics I am very grateful for the prompt and competent support provided by neaspec’s experts." Dr. Edward Yoxall 英国 帝国理工大学 Imperial College London Department of Physics London, United Kingdom | |
"After many years of research and development in near-field microscopy, we finally made our dream come true to perform infrared imaging & spectroscopy at the nanoscale. With neaSNOM we can additionally realize Raman, fluorescence and non-linear nano-spectroscopy." Prof. Rainer Hillenbrand 西班牙 纳米科学协同研究中心 CIC nanoGUNE Research Center Co-Founder and Scientific Advisor San Sebastian, Spain | |
"A unique advantage of the neaSNOM microscope is that it can be applied to many fields of scientific research such as Chemistry, Semiconductor Technology, Polymer Science and even Life-Science." Dr. Fritz Keilmann 德国 慕尼黑大学 Ludwig-Maximilians Universität München |
南京大学 | 中山大学 |
首都师范大学 | 苏州大学 |
University of San Diego,USA | University of Southampton, UK |
CIC nanoGUNE San Sebastion, Spain | LBNL Berkeley, USA |
Fraunhofer Institut ILT Aachen, Germany | Max-Planck-Institut of Quantum Optics, Garching, Germany |
University of Bristol, UK | RWTH Aachen, Germany |
California State University Long Beach, USA…… |
QUANTUM量子科学仪器贸易(北京)有限公司
仪器网(yiqi.com)--仪器行业网络宣传传媒