重点解读!精细化工反应安全风险评估规范 GB/T 42300-2022正式发布
-
《GB/T 42300-2022 精细化工反应安全风险评估规范》于2022年12月30日起正式实施,作为精细化工反应安全风险评估领域SHOU个正式国家标准,相较于此前的征集意见版在术语和定义、评估对象、测试与评估内容、数据测试和求取方法等重要内容上都有了变化!
“术语和定义”变化
对于常压反应体系,GB/T 42300-2022更多考虑了混合物的情况,MTT相关取值由沸点更改为泡点。
意见稿
3.7 技术最高温度
maximum temperature for technical reason
对于常压体系,技术ZUI高温度为反应体系的沸点;对于密封体系,技术ZUI高温度为反应体系允许的ZUI大压力对应的温度,并结合反应体系各组成部分的设计参数综合考虑;用MTT表示。
新国标
3.10 技术ZUI高温度
maximum temperature for technical reason
MTT
反应体系温度允许的ZUI高值。
注:常压反应体系,技术ZUI高温度取设计温度和体系泡点的低值;密闭反应体系,技术ZUI高温度取体系允许ZUI大压力对应的温度和设计温度的低值。
“评估对象”变化
1. 明确反应安全风险评估适用范围包括间歇、半间歇和连续釜式反应。
意见稿
本文件适用于精细化工反应安全风险的评估。
本文件规定了精细化工反应安全风险评估范围、评估内容、参数测试方法、数据求取方法、风险评估标准、评估结果运用、评估报告要求。
新国标
本文件规定了精细化工反应安全风险评估要求、评估基础条件、数据测试和求取方法、评估标准和评估报告要求。
本文件适用于精细化工间歇、半间歇和连续釜式反应安全风险评估。
2. GB/T 42300-2022评估范围更广,且对重点监管危险化工工艺要求更为严格,对于新建精细化工企业工艺也提出完成反应安全风险评估明确要求。
意见稿
4.1 重点评估对象
4.1.1 国内首次使用的新工艺、新配方投入工业化生产的以及国外首次引进的新工艺且未进行过反应安全风险评估的。
4.1.2 现有的工艺路线、工艺参数或装置能力发生变更的工艺,且没有反应安全风险评估报告的。
4.1.3 因为反应工艺问题发生过生产安全事故的工艺。
4.1.4 涉及硝化、氯化、氟化、重氮化、过氧化工艺的精细化工生产装置。
4.1.5 除上述情形外,属于精细化工的重点监管危险化工工艺及金属有机物合成反应(包括格氏反应)并且企业未明确掌握其反应安全风险的。
新国标
4.1 评估对象
4.1.1 国内首次使用并投入工业化生产的新工艺、新配方,从国外首次引进且未进行过反应安全风险评估的工艺。
4.1.2 现有的工艺路线、工艺参数或装置能力发生变更且未开展反应安全风险评估的工艺。
4.1.3 因为反应工艺问题发生过生产安全事故的工艺。
4.1.4 属于精细化工重点监管危险化工工艺及金属有机物合成反应(包括格氏反应)。
4.1.5 新建精细化工企业应在编制可行性报告或项目建议书前,完成反应安全风险评估。
“测试与评估内容”变化
生产工艺全流程的反应安全风险评估正式列入评估范围;全流程具体内容相较于征求意见稿,未进行明确说明,但应包括且不限于意见稿中提及的蒸馏、分馏、干燥、储存等单元操作的风险评估。
意见稿
4.2 测试与评估内容
4.2.1 反应安全风险评估应包括物料分解热评估、失控反应严重度评估、失控反应可能性评估、失控反应风险可接受程度评估和反应工艺危险度评估。
4.2.2 反应安全风险评估应对原料、中间产品、产品、副产物、废弃物,以及蒸馏、分馏等分离过程涉及的各相关物料进行热稳定测试;对化学反应过程开展热力学和动力学研究测试与分析。
4.2.3 涉及硝化、氯化、氟化、重氮化、过氧化工艺的精细化工生产装置应完成有关产品生产工艺全流程的反应安全风险评估,并对相关原料、中间产品、产品、副产物、废弃物,以及蒸馏、分馏等分离过程涉及的各相关物料进行热稳定性测试和蒸馏、干燥、储存等单元操作的风险评估。
新国标
4.2 测试与评估内容
4.2.1 反应安全风险评估应包括物料分解热评估、失控反应严重度评估、失控反应可能性评估、失控反应风险可接受程度评估和反应工艺危险度评估。
4.2.2 反应安全风险评估应对原料、催化剂、中间产品、产品、副产物、废弃物,以及蒸馏、分馏处理过程涉及的各相关物料进行热稳定性测试,对化学反应过程开展热力学和动力学研究测试与分析。
4.2.3 涉及硝化、氯化、氟化、重氮化、过氧化工艺的精细化工生产装置应完成有关产品生产工艺全流程的反应安全风险评估。
“数据测试和求取方法”变化
对于半间歇反应过程,化学计量点之前的热累积度计算公式中,时间比更改为质量比,手动投料需关注标准变化。
意见稿
6.5 热失控时工艺反应能够达到的最高温度,MTSR
6.5.1 对于间歇、半间歇的恒温反应过程,热失控时工艺反应能够达到的最高温度MTSR是单位时间内热累积导致体系的绝热温升与工艺温度之和。恒温反应过程的工艺温度如果存在波动范围,取波动范围的上限值。
间歇反应过程,热失控时工艺反应能够达到的最高温度MTSR通过计算获取,计算公式如下:
半间歇反应过程,热失控时工艺反应能够达到的最高温度MTSR通过计算获取,计算公式如下:
化学计量点之后,
化学计量点之前,
新国标
6.4 工艺反应能够达到的最高温度
6.4.1 对于间歇、半间歇的恒温反应过程,工艺反应能够达到的最高温度(MTSR)是冷却失效的情况下,热累积导致体系的绝热温升与工艺温度之和。恒温反应过程的工艺温度如果存在波动范围,取波动范围的上限值。
间歇反应过程,MTSR通过公式(2)计算。
半间歇反应过程,冷却失效时,立即停止加料,MTSR通过公式(3)计算。
注:化学计量点之后,
化学计量点之前,
此标准中有关数据测试和求取方法部分规范了对于物料分解热研究的适用仪器,尤其是克级非均相混合物料的热稳定性测试,使用快速筛选量热仪进行评估;而TMRad等关键基础数据,要求使用绝热加速量热仪、差示扫描量热仪等。
精细化工反应安全风险评估解决方案
依据"1号令"和最新标准要求,我们可为客户提供反应风险评估成套解决方案,帮助化工企业确定工艺风险等级并进行安全设计,提升企业本质安全水平。反应安全风险评估获取主要指标的关键仪器包括自动反应量热仪、绝热加速量热仪与快速筛选量热仪等。
由仰仪科技“热分析与量热”系列核心产品组合建设的反应风险评估实验室,可提供完整的物料分解热评估、失控反应危险性评估和反应工艺危险性评估能力。测试与鉴定结果科学、准确,受权威机构认可,能够帮助用户顺利通过CMA和CNAS等实验室资质认定。
让化工生产和日常生活更安全、更高效
仰仪科技成立于2006年,浙仪旗下实验室事业群成员,是专注于化工领域测试需求的国家高新技术企业。我们拥有成熟的精细化工反应安全风险测试仪器与实验室建设方案,是化工领域测试仪器设备、解决方案的专业开发者。
全部评论(0条)
热门问答
- 重点解读!精细化工反应安全风险评估规范 GB/T 42300-2022正式发布
《GB/T 42300-2022 精细化工反应安全风险评估规范》于2022年12月30日起正式实施,作为精细化工反应安全风险评估领域SHOU个正式国家标准,相较于此前的征集意见版在术语和定义、评估对象、测试与评估内容、数据测试和求取方法等重要内容上都有了变化!
“术语和定义”变化
对于常压反应体系,GB/T 42300-2022更多考虑了混合物的情况,MTT相关取值由沸点更改为泡点。
意见稿
3.7 技术最高温度
maximum temperature for technical reason
对于常压体系,技术ZUI高温度为反应体系的沸点;对于密封体系,技术ZUI高温度为反应体系允许的ZUI大压力对应的温度,并结合反应体系各组成部分的设计参数综合考虑;用MTT表示。
新国标
3.10 技术ZUI高温度
maximum temperature for technical reason
MTT
反应体系温度允许的ZUI高值。
注:常压反应体系,技术ZUI高温度取设计温度和体系泡点的低值;密闭反应体系,技术ZUI高温度取体系允许ZUI大压力对应的温度和设计温度的低值。
“评估对象”变化
1. 明确反应安全风险评估适用范围包括间歇、半间歇和连续釜式反应。
意见稿
本文件适用于精细化工反应安全风险的评估。
本文件规定了精细化工反应安全风险评估范围、评估内容、参数测试方法、数据求取方法、风险评估标准、评估结果运用、评估报告要求。
新国标
本文件规定了精细化工反应安全风险评估要求、评估基础条件、数据测试和求取方法、评估标准和评估报告要求。
本文件适用于精细化工间歇、半间歇和连续釜式反应安全风险评估。
2. GB/T 42300-2022评估范围更广,且对重点监管危险化工工艺要求更为严格,对于新建精细化工企业工艺也提出完成反应安全风险评估明确要求。
意见稿
4.1 重点评估对象
4.1.1 国内首次使用的新工艺、新配方投入工业化生产的以及国外首次引进的新工艺且未进行过反应安全风险评估的。
4.1.2 现有的工艺路线、工艺参数或装置能力发生变更的工艺,且没有反应安全风险评估报告的。
4.1.3 因为反应工艺问题发生过生产安全事故的工艺。
4.1.4 涉及硝化、氯化、氟化、重氮化、过氧化工艺的精细化工生产装置。
4.1.5 除上述情形外,属于精细化工的重点监管危险化工工艺及金属有机物合成反应(包括格氏反应)并且企业未明确掌握其反应安全风险的。
新国标
4.1 评估对象
4.1.1 国内首次使用并投入工业化生产的新工艺、新配方,从国外首次引进且未进行过反应安全风险评估的工艺。
4.1.2 现有的工艺路线、工艺参数或装置能力发生变更且未开展反应安全风险评估的工艺。
4.1.3 因为反应工艺问题发生过生产安全事故的工艺。
4.1.4 属于精细化工重点监管危险化工工艺及金属有机物合成反应(包括格氏反应)。
4.1.5 新建精细化工企业应在编制可行性报告或项目建议书前,完成反应安全风险评估。
“测试与评估内容”变化
生产工艺全流程的反应安全风险评估正式列入评估范围;全流程具体内容相较于征求意见稿,未进行明确说明,但应包括且不限于意见稿中提及的蒸馏、分馏、干燥、储存等单元操作的风险评估。
意见稿
4.2 测试与评估内容
4.2.1 反应安全风险评估应包括物料分解热评估、失控反应严重度评估、失控反应可能性评估、失控反应风险可接受程度评估和反应工艺危险度评估。
4.2.2 反应安全风险评估应对原料、中间产品、产品、副产物、废弃物,以及蒸馏、分馏等分离过程涉及的各相关物料进行热稳定测试;对化学反应过程开展热力学和动力学研究测试与分析。
4.2.3 涉及硝化、氯化、氟化、重氮化、过氧化工艺的精细化工生产装置应完成有关产品生产工艺全流程的反应安全风险评估,并对相关原料、中间产品、产品、副产物、废弃物,以及蒸馏、分馏等分离过程涉及的各相关物料进行热稳定性测试和蒸馏、干燥、储存等单元操作的风险评估。
新国标
4.2 测试与评估内容
4.2.1 反应安全风险评估应包括物料分解热评估、失控反应严重度评估、失控反应可能性评估、失控反应风险可接受程度评估和反应工艺危险度评估。
4.2.2 反应安全风险评估应对原料、催化剂、中间产品、产品、副产物、废弃物,以及蒸馏、分馏处理过程涉及的各相关物料进行热稳定性测试,对化学反应过程开展热力学和动力学研究测试与分析。
4.2.3 涉及硝化、氯化、氟化、重氮化、过氧化工艺的精细化工生产装置应完成有关产品生产工艺全流程的反应安全风险评估。
“数据测试和求取方法”变化
对于半间歇反应过程,化学计量点之前的热累积度计算公式中,时间比更改为质量比,手动投料需关注标准变化。
意见稿
6.5 热失控时工艺反应能够达到的最高温度,MTSR
6.5.1 对于间歇、半间歇的恒温反应过程,热失控时工艺反应能够达到的最高温度MTSR是单位时间内热累积导致体系的绝热温升与工艺温度之和。恒温反应过程的工艺温度如果存在波动范围,取波动范围的上限值。
间歇反应过程,热失控时工艺反应能够达到的最高温度MTSR通过计算获取,计算公式如下:
半间歇反应过程,热失控时工艺反应能够达到的最高温度MTSR通过计算获取,计算公式如下:
化学计量点之后,
化学计量点之前,
新国标
6.4 工艺反应能够达到的最高温度
6.4.1 对于间歇、半间歇的恒温反应过程,工艺反应能够达到的最高温度(MTSR)是冷却失效的情况下,热累积导致体系的绝热温升与工艺温度之和。恒温反应过程的工艺温度如果存在波动范围,取波动范围的上限值。
间歇反应过程,MTSR通过公式(2)计算。
半间歇反应过程,冷却失效时,立即停止加料,MTSR通过公式(3)计算。
注:化学计量点之后,
化学计量点之前,
此标准中有关数据测试和求取方法部分规范了对于物料分解热研究的适用仪器,尤其是克级非均相混合物料的热稳定性测试,使用快速筛选量热仪进行评估;而TMRad等关键基础数据,要求使用绝热加速量热仪、差示扫描量热仪等。
精细化工反应安全风险评估解决方案
依据"1号令"和最新标准要求,我们可为客户提供反应风险评估成套解决方案,帮助化工企业确定工艺风险等级并进行安全设计,提升企业本质安全水平。反应安全风险评估获取主要指标的关键仪器包括自动反应量热仪、绝热加速量热仪与快速筛选量热仪等。
由仰仪科技“热分析与量热”系列核心产品组合建设的反应风险评估实验室,可提供完整的物料分解热评估、失控反应危险性评估和反应工艺危险性评估能力。测试与鉴定结果科学、准确,受权威机构认可,能够帮助用户顺利通过CMA和CNAS等实验室资质认定。
让化工生产和日常生活更安全、更高效
仰仪科技成立于2006年,浙仪旗下实验室事业群成员,是专注于化工领域测试需求的国家高新技术企业。我们拥有成熟的精细化工反应安全风险测试仪器与实验室建设方案,是化工领域测试仪器设备、解决方案的专业开发者。
- 【行业动态】时隔20年!GB/T 18883-2022《室内空气质量标准》正式发布!
GB/T 18883-2022《室内空气质量标准》正式发布
新版GB/T 18883-2022《室内空气质量标准》于2022年7月11日正式发布,将在2023年2月1日正式实施,新标准将全部代替现行的GB/T 18883-2002。
室内空气质量指标
GB/T 18883-2002 《室内空气质量标准》运行20年后,迎来首次修订。GB/T 18883-2022中除结构调整和编辑性改动外,室内空气质量指标的主要修订内容如下表1:
表1 新旧标准的指标对比
整体来看,调整的指标除了二氧化碳由“日平均值”修改为“1小时平均”,其他指标均有收严;《标准》规定了室内空气质量的物理性、化学性、生物性和放射性指标及要求,具体要求见下表2。
表2 室内空气质量指标与要求
指标测定方法
《标准》附录A(室内空气质量指标检测技术导则)还规定了室内空气质量指标监测的点位布设、采样时间和频次、采样仪器等内容。《标准》附录列出了甲醛、苯、甲苯、二甲苯、总挥发性有机物、苯并[α]芘、可吸入颗粒物、细颗粒物、细菌总数、氡等10项指标的检验方法(见附录B –附录 H),其中三氯乙烯和四氯乙烯可直接参照附录D总挥发性有机物TVOC的检验方法(固体吸附-热解析-GCMS)。
解决方案
针对《标准》附录D 中的总挥发性有机物,坛墨质检提供甲醇中22种挥发性有机物VOC混标方案,欢迎大家到坛墨质检商城选购。
点击查看《标准》全文
- TSE风险评估是什么
- 如何进行氨气检测仪风险评估?
如何进行氨气检测仪风险评估?
- 微孔板热封仪选型规范要求重点是什么?
微孔板热封仪选型规范要求
微孔板热封仪是一种广泛应用于生命科学、制药和生物技术领域的设备,主要用于微孔板的封闭处理,确保样品的长期稳定性和防止污染。随着实验需求的不断发展,微孔板热封仪的选型要求变得越来越高。在选择合适的微孔板热封仪时,用户不仅需要关注设备的基本性能,还需考虑到实际应用场景中的特殊需求。本文将深入分析微孔板热封仪选型的规范要求,为相关从业人员提供专业的指导。
1. 热封温度和时间控制
微孔板热封仪的核心功能之一是能够精确控制热封温度与时间,这对于实验结果的可靠性至关重要。不同类型的封闭材料(如铝膜、塑料膜等)在热封过程中需要不同的温度和时间参数。因此,选型时必须确保设备具备温度范围可调和时间控制的功能,以适应多样化的实验需求。
2. 热封压力和均匀性
热封压力是影响封闭质量的重要因素,过高或过低的压力都可能导致封闭效果不佳。因此,选择微孔板热封仪时,要确保其具备稳定的压力调节能力,能够在不同的样品类型和膜材料下实现均匀的封闭。优质的设备通常配备有精密的压力传感器,能够实时监控并调整压力,确保封闭效果的稳定性。
3. 兼容性与适应性
微孔板的种类多样,包括96孔板、384孔板、1536孔板等,不同尺寸的微孔板需要对应的热封设备进行处理。选购时要特别注意设备的兼容性,确保其能够处理所使用的微孔板规格。设备的适应性也是一个重要的考量因素,特别是对于那些涉及特殊实验需求(如高温、高压环境)的应用场景,设备必须能够适应各种挑战。
4. 操作界面与用户体验
对于频繁操作的实验人员而言,微孔板热封仪的操作界面和人性化设计至关重要。现代的设备通常配备了触摸屏或智能控制面板,使得用户能够方便地调整温度、时间、压力等参数。设备的自动化程度也是选择时的重要指标,自动化操作可以减少人为错误,提高实验效率。
5. 安全性与可靠性
实验室中的安全性要求非常高,微孔板热封仪作为高温高压设备,在选型时必须考虑其安全设计。优质的热封仪设备通常具备过热保护、压力保护以及故障报警功能,能够及时应对可能出现的危险状况。设备的可靠性同样不容忽视,特别是在大规模连续运行的情况下,设备的稳定性和耐用性至关重要。
6. 售后服务与维护支持
选择微孔板热封仪时,还要关注厂商提供的售后服务和技术支持。优质的售后服务不仅包括设备的安装调试和技术培训,还应涵盖设备运行中的维修服务和技术咨询。定期的设备维护和保养可以有效延长设备的使用寿命,保障实验室工作流程的顺畅。
结语
微孔板热封仪的选型是一项技术要求较高的工作,需要综合考虑温度控制、压力均匀性、设备兼容性、操作便捷性、安全性以及售后服务等多方面因素。只有全面了解并满足这些规范要求,才能确保设备在实验中达到佳的效果,从而为科研工作提供更加、可靠的支持。在选择过程中,科研人员应依据自身实验需求,选择适合的设备类型,以确保研究的顺利进行。
- 明华参与起草的青海省“DB63/T 1873-2020”正式发布啦!
2020年12月9日,青海省市场监督管理局正式发布了“DB63/T 1873-2020 《固定污染源废气 低浓度颗粒物的测定 β射线法》”。此标准是明华电子继参与起草山东地-标“DB37/T 3785-2019”以来第二项参与起草的烟尘直读相关标准。
作为废气监测领域烟尘直读技术领军者,明华电子一直坚持以技术创新为企业发展驱动力,以先进的技术,高质量的产品和优质的服务,与立志从事环保事业的同仁携手并肩,共创美好家园!
- 求助标准GB/T 15000.8-2023
求助GB/T 15000.8-2023标准样品工作导则 第8部分:标准样品的使用
- [标准解读]新标准“DB37/T 3785—2019”解读及
近日,山东省市场监督管理局发布了固定污染源废气 低浓度颗粒物的测定方法标准:DB37/T 3785—2019 《固定污染源废气 低浓度颗粒物的测定 β 射线法》,新标准将于2020年1月24日正式实施。青岛明华电子仪器有限公司参与本标准的起草。
标准解读
新标准解读一:明确新方法固定污染源废气中低浓度颗粒物的β射线法及适用范围
新标准解读二:解析方法原理
新标准解读三:仪器的组成
新标准解读四:结果计算与表示
新标准解读五:质量保证,样品采集时应保证每个样品的增重不小于 1 mg, 或标干采样体积不小于 1 m3
- 标准解读丨七月起实施,GB/T 42113-2022农产品中生氰糖苷的测定
GB/T 42113-2022
农产品中生氰糖苷的测定
生氰糖苷物质的危害
生氰作用(cyanogenesisi)是指植物具有合成生氰化合物并能水解释放氢氰酸(HCN)的能力。生氰糖苷(Cyanogentic glycosides)是由氰醇衍生物的羟基和D-葡萄糖缩合形成的糖苷,广泛存在于豆科,蔷薇科,稻科的10000余种植物中。
生氰糖苷物质可水解生成高毒性的氰氢酸,从而对人体造成危害:如心律紊乱、肌肉麻痹、呼吸窘迫、视神经受损等。含有生氰糖苷的食源性植物有木薯、杏仁、枇杷和豆类等。
标准概况
GB/T 42113-2022 农产品中生氰糖苷的测定 液相色谱-串联质谱法 2023年七月起实施。
本文件描述了农产品中亚麻苦苷、β-龙胆二糖丙酮氰醇、百脉根苷、3-龙胆二糖甲乙酮氰醇、紫杉氰苷、蜀黍苷、苦杏仁苷、黑野樱苷的液相色谱-串联质谱测定方法。
本文件适用于木薯、亚麻籽﹑高粱、竹笋、杏仁等农产品中生氰糖苷含量的测定。
标准规定的生氰糖苷化合物检出限与定量限(单位为微克每千克):
化合物名称 检出限 定量限 亚麻苦苷 5 20 β-龙胆二糖丙酮氰醇 5 20 百脉根苷 1 5 β-龙胆二糖甲乙酮氰醇 5 20 紫杉氰苷 5 20 蜀黍苷 2.5 10 苦杏仁苷 2 10 黑野樱苷 25 100 测定步骤
一、提取
称取1g试样(精确到0.1 mg)于 15mL离心管中,加3mL80%甲醇水溶液,涡旋振荡15s,超声提取15min,立即于 200r/min 离心10min,取全部上清液;向残渣中再次加入3mL80%甲醇水液按上述条件提取、离心,合并两次提取液于10mL容量瓶中加水至刻度线,混匀待净化。
二、净化
将活化好的固相萃取柱连接到全自动固相萃取仪,将粗提液转移至萃取柱中,待样液全部流过柱子后,弃去流出液。用2mL水淋洗柱子并彻底抽干,弃去淋洗液。用3mL30%甲醇乙腈溶液洗脱柱子,分次洗脱,每次1 mL流速1 mL/min,收集全部洗脱液。洗脱液氮气吹干(40℃)后,用1mL10%甲醇水溶液复溶。过0.22μm滤膜供液相色谱-串联质谱测定。
设备推荐
ASHMAR是专注于实验室设备研发、制造及服务的科创型公司,以用户需求为导向,提供优质专业的设备与服务。
ASHMAR的实验室前处理设备能够帮助实现样品测定流程的自动化、智能化,提高测定效率,减少实验人员与有毒物质的接触:
全自动浓缩仪 VortexVap A系列
VortexVap A系列全自动定量浓缩仪,采用氮气斜吹的模式及涡旋气流的原理,使液体样品在水浴加热下能快速浓缩。可以同时对8个样品进行浓缩,每个样品管都配有光学传感器,可以对样品尾管中的液体进行准确定量。通过仪器自带的彩色控制屏对仪器进行实时控制,一键式操作使浓缩变得更加简单。
以用户为导向的设计特点
● 透明水浴创造性实现了样品浓缩过程的可视性,不必中断查看
● 可拆卸式吹气孔,随时可调的吹气孔位置
● 选配自动调压模式之后的气流阶梯模式,提高了自动化程度,优化了浓缩进程
● 具有即插式进气口、即插式排水口、水浴照明系统以及大尺寸彩色触摸屏控制等特点
灵活的配置
● 多种仪器型号满足不同应用
● 多种试管架和样品管配置
● 多种功能模块可以选配(自动调压等模块)
● 适配QuickTrace/FSE/NGA等仪器
全自动固相萃取仪 QuickTrace S系列
QuickTrace S是ASHMAR公司出品的全自动固相萃取取仪,利用QuickTrace S全自动固相萃取仪可以轻松高效地萃取所需的分析物。
QuickTrace S可以实现SPE全部步骤(活化、上样、淋洗、吹干、洗脱等)的自动化,减少溶剂消耗量,确保高回收率,提高可重复性。
以用户为导向的设计特点
● 透明窗口创造性实现了样品萃取过程的可视性
● 大尺寸屏幕、照明系统方便用户查看以及操作
● 主机配屏幕操控、PC有线操控、PC无线操控等多种方式操作
● 具有即插式进气口、即插式排废口等特点
灵活的配置
● 多种通道满足不同应用
● 多种试管架和样品管配置
● 0.6ml-20L上样体积配置
● 适配VortexVap/FSE/VacuuoVap等仪器
涡旋混合器 WirbelMIxer
WirbelMixer是ASHMAR SCIENTIFIC出品的一款涡旋混合器,它能广泛应用于生物化学、基因工程、医学等实验的需要,将所需混合的液体、粉末以及高速旋涡状形式快速、均匀、彻底的混合,提高实验效率和准确度。
以用户为导向的设计特点
● 大尺寸屏幕,方便用户查看与操作
● 图形可视化操作,自动执行
● 可调速控制,选择适合的混合方式
● 科学的动力学设计,提供稳定的操作平台
灵活的配置
● 多种试管和样品管配置
● 支持多种语言
● 适配VortexVap/VacuuoVap/QuickTrace等设备
参考标准:GB/T 42113-2022 农产品中生氰糖苷的测定 液相色谱-串联质谱法
- 微生物气溶胶污染的健康风险评估怎么做
- 检验科生物安全风险评估预测等级怎么划分
4月突出贡献榜
推荐主页
最新话题
参与评论
登录后参与评论