仪器网(yiqi.com)欢迎您!

| 注册登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

热点应用丨耦合热冷台附件实现上转换发光材料温度传感的研究

天美仪拓实验室设备(上海)有限公司 2022-12-27 15:23:37 290  浏览
  • 前言

    许多发光材料的发光特性随温度、压力或化学物质的存在而变化。这种特性在发光传感器的开发中得到了长期的应用。除了化学传感外,发光测温法也是最常用的传感方法之一。与其他方法不同,它不需要宏观的探针与探测区域进行物理接触。这是发光测温法无可比拟的优势。例如,可以功能化的发光纳米颗粒进入生物靶,荧光显微镜可以准确探测不同区域的温度。这种纳米测温法在医学领域有很大的潜力,如:对温度高于平均值的癌细胞进行成像[1]。


    发光测温可以根据强度、线宽、光致发光寿命或光谱位移的变化来进行。由于镧系离子的稳定性和窄光谱特性,很容易识别到这些变化,因此在温度传感的应用中经常使用镧系离子[2]。此外,镧系掺杂材料呈现上转换发光性质: 可被近红外(NIR)光激发,在光谱可见光区发射。近红外光谱激发减少了生物组织的自吸收和散射,因此远程激励变得更加容易。由于这一性质,越来越多的温度生物成像研究使用无机纳米掺杂镧离子制备上转换纳米颗粒 (UCNPs)[3]。



    图1. NaY0.77Yb0.20Er0.03F4上转换发光机理的结构示意图,其中红色和绿色的线代表发射跃迁。灰色的线代表非辐射跃迁。


    图1是上转换荧光粉NaY0.77Yb0.20Er0.03F4发光机理的示意图。至少需要两个980nm的光子去激发样品来产生可见区的发射。除了直接激发Er3+离子外,还存在从激发态Yb3+与Er3+激发态的能量转移,该材料在可见光光谱的蓝色、绿色和红色区域发光。取决于跃迁过程中Er3+能级的高低。上转换的测温法通常集中使用525nm和540nm两个波长的发射峰,分别对应2H11/2 →4I15/2和4S3/2 → 4I15/2能级跃迁。2H11/2和2H11/2两个能级在能量上紧密间隔,他们实际处于热平衡状态。因此,它们的粒子数比例可以用玻尔兹曼分布来表示:



    式中,Ni是能级i上的粒子数,Δe是两个能级间的能量差,k是玻尔兹曼常数,C是简并常数。

    基于此,525nm与540nm处荧光强度的比值RHS可用来推出2H11/2与4S3/2的比值,从而能够计算出样品的温度。爱丁堡(Edinburgh Instruments)荧光光谱仪FLS1000通过光纤耦合变温台能够完成该测试项目。此变温台不仅能够保证在FLS1000和显微镜下研究的为同一样品,并且没有任何中间样品转移步骤。本文通过FLS1000荧光光谱仪耦合变温台对上转换样品NaY0.77Yb0.20Er0.03F4进行不同温度下上转换发光的测试。


    测试方法与样品

    测试样品为NaY0.77Yb0.20Er0.03F4上转换发光粉末,购置于Sigma Aldrich。将样品放置于Linkam HFS350EV-PB4冷热台里的石英样品池中。通过光纤将冷热台与FLS1000样品仓相连接。使用稳态光源Xe2 980nm进行激发,激光能量要低,以防止样品变热。使用980nm的激光器往往会造成样品受激光照射而变热[4]。FLS1000配置:双单色器,标准检测器PMT-900。时间分辨的寿命测试使用脉冲氙灯(μF2)作为激发光源,采用MCS模式测试发光寿命。



    测试结果与讨论

    使用FLS1000的Fluoracle中温度mapping的测试功能,分别测试从-100℃到80℃每间隔20℃温度范围内,样品上转换发射的红光及绿光随温度的变化情况。结果如图2(上转化绿光)和3(上转换红光)所示。图2 中上转换绿光发射峰是由于Er3+的2H11/2 →4I15/2和4S3/2 → 4I15/2两个能级跃迁产生的。4S3/2 → 4I15/2和4F9/2 → 4I15/2对应发射峰的强度随着温度升高而降低。但是2H11/2 → 4I15/2对应的谱待变化的稍有不同:在273K以下,随着温度的增加其发光强度降低。但当温度继续升高时,增长缓慢。



    图2. NaY0.77Yb0.20Er0.03F4温度相关的发射图谱(绿光部分)。使用耦合Linkam冷热台的FLS1000光谱仪进行测试。测试条件:λex=980 nm, Δλex=10 nm, Δλem=10 nm, 步进step=0.10nm, 积分时间=1s/step。内插图为对应2H11/2→ 4I15/2跃迁的发射范围的放大图。



    图3. NaY0.77Yb0.20Er0.03F4温度相关的发射图谱(红光部分)。使用耦合Linkam冷热台的FLS1000光谱仪进行测试。测试条件:λex=980nm, Δλex=10nm, Δλem=10nm, 步进step=0.10nm, 积分时间=1s/step。


    图4. NaY0.77Yb0.20Er0.03F4温度相关的寿命三维谱图。使用耦合Linkam冷热台的FLS1000光谱仪进行测试。测试2H11/2→ 4I15/2对应的发射。测试条件:λex=980nm, Δλex=15nm, λem=541nm ,Δλem=10nm, 灯源频率=100Hz, 采集时间:每条衰退曲线采集5分钟。红色和蓝色曲线分别代表-100℃和40℃下的测试结果。随着温度的增加,非辐射弛豫过程降低了整体的上转换发光过程。有关温度的猝灭的动力学可以通过图4所示的温度相关的三维寿命谱图来进行研究,当温度增加时,该样品的发光寿命从640μs降低至530μs,有明显下降。回到图2和图3,从4S3/2 ,2H11/2 到4F9/2的弛豫过程相对增加了红色光的发射强度。这可以从图5(a)的温度Rrg函数看出。2H11/2 →4I15/2和4S3/2 → 4I15/2的比值,RHS是优异的温度指数参数(前言已介绍过),图5(b)是RHS随温度的变化图,图5(c)是相同数据的对数值。有趣的是,RHS并没有遵循玻尔兹曼曲线:在高温下,额外的弛豫过程发生并引发4S3/2 → 4I15/2跃迁的“缓慢增加”。这与之前的报告一致[5,6],证明了上转换的复杂动力学过程: 4H11/2到 4S3/2的非辐射过程在高温下变得更为重要,所以粒子数与RHS不相等。应该指出不同温度下的RHS 很大程度上取决于样品颗粒的大小[4,6]。为了说明上转换测温的概念,将曲线的低温区域拟合到图5 (c)所示的直线玻尔兹曼图中,可以得到荧光测温系统S的相对灵敏度。这是评价发光温度计系统的一个有用参数,计算方法如下:



    图5的斜率为-ΔE/k, 在20℃的灵敏度为1.0%K-1。这一结果与类似的上转换测温系统是一致的。




    图5.  上转换发射带强度的比值随温度变化的函数图:(a)红光和绿光的比值(b)2H11/2 →4I15/2和4S3/2 → 4I15/2的比值 (c) 图(b)的对数数据图。与玻尔兹曼图第 一部分的线性拟合如(c)所示。


    结论

    NaY0.77Yb0.20Er0.03F4温度相关上转换发光强度及寿命均可使用爱丁堡荧光光谱仪FLS1000 耦合Linkam冷热台进行测试。2H11/2 →4I15/2和4S3/2 → 4I15/2的比值可作为发光测温系统中的温度探针,其灵敏度为1.0%K-1。通过光纤耦合的Linkam冷热台附件能够使用户在发光测试和显微镜下灵活轻松切换,中途不需要样品转移步骤。



    参考文献

    [1] C. D. S. Brites, et al., Nanoscale 4, 4799-4829 (2012)
    [2] M. D. Dramianin, Methods Appl. Fluoresc. 4, 042001 (2016)
    [3] M. González-Béjar and J. Pérez-Prieto, Methods Appl. Fluoresc. 3, 042002 (2015)
    [4] S. Zhou, et al., Optics Communications 291, 138-142 (2013)
    [5] X. Bai, et al., J. Phys. Chem. C 111, 13611-13617 (2007)
    [6] W. Yu, et al., Dalton Trans. 43, 6139-6147 (2014)




参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

热点应用丨耦合热冷台附件实现上转换发光材料温度传感的研究

前言

许多发光材料的发光特性随温度、压力或化学物质的存在而变化。这种特性在发光传感器的开发中得到了长期的应用。除了化学传感外,发光测温法也是最常用的传感方法之一。与其他方法不同,它不需要宏观的探针与探测区域进行物理接触。这是发光测温法无可比拟的优势。例如,可以功能化的发光纳米颗粒进入生物靶,荧光显微镜可以准确探测不同区域的温度。这种纳米测温法在医学领域有很大的潜力,如:对温度高于平均值的癌细胞进行成像[1]。


发光测温可以根据强度、线宽、光致发光寿命或光谱位移的变化来进行。由于镧系离子的稳定性和窄光谱特性,很容易识别到这些变化,因此在温度传感的应用中经常使用镧系离子[2]。此外,镧系掺杂材料呈现上转换发光性质: 可被近红外(NIR)光激发,在光谱可见光区发射。近红外光谱激发减少了生物组织的自吸收和散射,因此远程激励变得更加容易。由于这一性质,越来越多的温度生物成像研究使用无机纳米掺杂镧离子制备上转换纳米颗粒 (UCNPs)[3]。



图1. NaY0.77Yb0.20Er0.03F4上转换发光机理的结构示意图,其中红色和绿色的线代表发射跃迁。灰色的线代表非辐射跃迁。


图1是上转换荧光粉NaY0.77Yb0.20Er0.03F4发光机理的示意图。至少需要两个980nm的光子去激发样品来产生可见区的发射。除了直接激发Er3+离子外,还存在从激发态Yb3+与Er3+激发态的能量转移,该材料在可见光光谱的蓝色、绿色和红色区域发光。取决于跃迁过程中Er3+能级的高低。上转换的测温法通常集中使用525nm和540nm两个波长的发射峰,分别对应2H11/2 →4I15/2和4S3/2 → 4I15/2能级跃迁。2H11/2和2H11/2两个能级在能量上紧密间隔,他们实际处于热平衡状态。因此,它们的粒子数比例可以用玻尔兹曼分布来表示:



式中,Ni是能级i上的粒子数,Δe是两个能级间的能量差,k是玻尔兹曼常数,C是简并常数。

基于此,525nm与540nm处荧光强度的比值RHS可用来推出2H11/2与4S3/2的比值,从而能够计算出样品的温度。爱丁堡(Edinburgh Instruments)荧光光谱仪FLS1000通过光纤耦合变温台能够完成该测试项目。此变温台不仅能够保证在FLS1000和显微镜下研究的为同一样品,并且没有任何中间样品转移步骤。本文通过FLS1000荧光光谱仪耦合变温台对上转换样品NaY0.77Yb0.20Er0.03F4进行不同温度下上转换发光的测试。


测试方法与样品

测试样品为NaY0.77Yb0.20Er0.03F4上转换发光粉末,购置于Sigma Aldrich。将样品放置于Linkam HFS350EV-PB4冷热台里的石英样品池中。通过光纤将冷热台与FLS1000样品仓相连接。使用稳态光源Xe2 980nm进行激发,激光能量要低,以防止样品变热。使用980nm的激光器往往会造成样品受激光照射而变热[4]。FLS1000配置:双单色器,标准检测器PMT-900。时间分辨的寿命测试使用脉冲氙灯(μF2)作为激发光源,采用MCS模式测试发光寿命。



测试结果与讨论

使用FLS1000的Fluoracle中温度mapping的测试功能,分别测试从-100℃到80℃每间隔20℃温度范围内,样品上转换发射的红光及绿光随温度的变化情况。结果如图2(上转化绿光)和3(上转换红光)所示。图2 中上转换绿光发射峰是由于Er3+的2H11/2 →4I15/2和4S3/2 → 4I15/2两个能级跃迁产生的。4S3/2 → 4I15/2和4F9/2 → 4I15/2对应发射峰的强度随着温度升高而降低。但是2H11/2 → 4I15/2对应的谱待变化的稍有不同:在273K以下,随着温度的增加其发光强度降低。但当温度继续升高时,增长缓慢。



图2. NaY0.77Yb0.20Er0.03F4温度相关的发射图谱(绿光部分)。使用耦合Linkam冷热台的FLS1000光谱仪进行测试。测试条件:λex=980 nm, Δλex=10 nm, Δλem=10 nm, 步进step=0.10nm, 积分时间=1s/step。内插图为对应2H11/2→ 4I15/2跃迁的发射范围的放大图。



图3. NaY0.77Yb0.20Er0.03F4温度相关的发射图谱(红光部分)。使用耦合Linkam冷热台的FLS1000光谱仪进行测试。测试条件:λex=980nm, Δλex=10nm, Δλem=10nm, 步进step=0.10nm, 积分时间=1s/step。


图4. NaY0.77Yb0.20Er0.03F4温度相关的寿命三维谱图。使用耦合Linkam冷热台的FLS1000光谱仪进行测试。测试2H11/2→ 4I15/2对应的发射。测试条件:λex=980nm, Δλex=15nm, λem=541nm ,Δλem=10nm, 灯源频率=100Hz, 采集时间:每条衰退曲线采集5分钟。红色和蓝色曲线分别代表-100℃和40℃下的测试结果。随着温度的增加,非辐射弛豫过程降低了整体的上转换发光过程。有关温度的猝灭的动力学可以通过图4所示的温度相关的三维寿命谱图来进行研究,当温度增加时,该样品的发光寿命从640μs降低至530μs,有明显下降。回到图2和图3,从4S3/2 ,2H11/2 到4F9/2的弛豫过程相对增加了红色光的发射强度。这可以从图5(a)的温度Rrg函数看出。2H11/2 →4I15/2和4S3/2 → 4I15/2的比值,RHS是优异的温度指数参数(前言已介绍过),图5(b)是RHS随温度的变化图,图5(c)是相同数据的对数值。有趣的是,RHS并没有遵循玻尔兹曼曲线:在高温下,额外的弛豫过程发生并引发4S3/2 → 4I15/2跃迁的“缓慢增加”。这与之前的报告一致[5,6],证明了上转换的复杂动力学过程: 4H11/2到 4S3/2的非辐射过程在高温下变得更为重要,所以粒子数与RHS不相等。应该指出不同温度下的RHS 很大程度上取决于样品颗粒的大小[4,6]。为了说明上转换测温的概念,将曲线的低温区域拟合到图5 (c)所示的直线玻尔兹曼图中,可以得到荧光测温系统S的相对灵敏度。这是评价发光温度计系统的一个有用参数,计算方法如下:



图5的斜率为-ΔE/k, 在20℃的灵敏度为1.0%K-1。这一结果与类似的上转换测温系统是一致的。




图5.  上转换发射带强度的比值随温度变化的函数图:(a)红光和绿光的比值(b)2H11/2 →4I15/2和4S3/2 → 4I15/2的比值 (c) 图(b)的对数数据图。与玻尔兹曼图第 一部分的线性拟合如(c)所示。


结论

NaY0.77Yb0.20Er0.03F4温度相关上转换发光强度及寿命均可使用爱丁堡荧光光谱仪FLS1000 耦合Linkam冷热台进行测试。2H11/2 →4I15/2和4S3/2 → 4I15/2的比值可作为发光测温系统中的温度探针,其灵敏度为1.0%K-1。通过光纤耦合的Linkam冷热台附件能够使用户在发光测试和显微镜下灵活轻松切换,中途不需要样品转移步骤。



参考文献

[1] C. D. S. Brites, et al., Nanoscale 4, 4799-4829 (2012)
[2] M. D. Dramianin, Methods Appl. Fluoresc. 4, 042001 (2016)
[3] M. González-Béjar and J. Pérez-Prieto, Methods Appl. Fluoresc. 3, 042002 (2015)
[4] S. Zhou, et al., Optics Communications 291, 138-142 (2013)
[5] X. Bai, et al., J. Phys. Chem. C 111, 13611-13617 (2007)
[6] W. Yu, et al., Dalton Trans. 43, 6139-6147 (2014)




2022-12-27 15:23:37 290 0
上转换发光材料的上转换过程及其机理
 
2018-12-08 15:04:37 395 0
NaYF4:Yb/Tm上转换发光性质研究

       上转换荧光材料是一类在长波长光激发下能产生短波长光的发光材料,基于这个特点,上转换发光材料在生物荧光标记、太阳能电池、红外光电探测、激光及显示等众多领域具有巨大的应用前景。稀土掺杂的上转换发光纳米材料的激发光为红外光,且生物组织的光透过窗口处于红外波段,这意味着能够有实现荧光探针体内发光。另外稀土掺杂的上转换发光纳米材料还具有发光灵敏性高,光稳定性好,化学性质稳定,生物毒性低等优点。因此,稀土掺杂的上转换发光纳米材料有望成为理想的具有应用前景的生物荧光探针。

       NaYF4是目前公认的上转换效率较高的基质材料,通过掺杂铥(Tm3+)、铒(Er3+)或者其他稀土离子作为激活剂,镱(Yb3+)作敏化剂,在980nm红外光的激发下,利用上转换发光过程可实现可见光发射。通过控制纳米材料的尺寸,并利用各种表面修饰剂对纳米粒子的表面进行适当修饰,增强其生物兼容性,从而可以制备红外光激发的生物荧光探针,进而实现生物细胞、组织的荧光检测与标记。

一、上转换荧光光谱
采用北京卓立汉光自主研发生产的OmniFluo“卓谱”荧光光谱测量系统测试NaYF4:Yb/Tm的上转换荧光光谱,激发光源选用980nm固体激光器,荧光光谱图如1所示;图2为Yb3+离子和Tm3+离子的能级跃迁图以及NaYF4:Yb/Tm的上转换发光机制。

图1  NaYF4:Yb/Tm的上转换荧光光谱

图1为NaYF4:Yb/Tm的上转换荧光光谱图,发射峰主要对应于Tm3+:289 nm左右对用于1I63H6,354 nm左右对应于1I63F4,361.5 nm左右对用于1D23H6,450 nm左右对用于1D23F4,475.5 nm左右对用于1G43H6,510.5 nm左右对用于1D23H5,646.5 nm左右对用于1G4→3F4,802.5 nm左右对用于3H43H6

图2  Yb3+离子和Tm3+离子的能级跃迁图以及NaYF4:Yb/Tm的上转换发光机制

图2为Yb3+离子和Tm3+离子的能级跃迁图以及β-NaYF4:18%Yb,0.5%Tm的上转换发光机制,图中我们给出了样品各个上转换发射峰的电子布居过程。在980nm红外激光激发下,Yb3+离子首先被激发,然后通过三步能量传递过程来布居Tm3+蓝色上转换发光能级1G4。第 一步:2F5/22F7/2(Yb3+):3H63H5(Tm3+);第二步:Tm3+处于3H5能级上的电子快速无辐射弛豫到3F4能级,然后吸收一光子布居到3F2,3能级,2F5/22F7/2(Yb3+):3F43F2,3(Tm3+);第三步:处于3F2,3能级上的电子快速无辐射弛豫到3H4能级,再吸收一光子能量布居到1G4能级,2F5/22F7/2(Yb3+):3H41G4(Tm3+)。布居1D2能级是通过能量传递3F2,33H6(Tm3+):3H41D2(Tm3+)完成的,为四光子过程。布居1I6能级是通过2F5/22F7/2(Yb3+):1D23P2(Tm3+),3P2能级上的电子再无辐射弛豫到1I6能级,这一能量传递过程为五光子过程。

二、上转换荧光寿命

     采用北京卓立汉光自主研发生产的OmniFluo“卓谱”荧光寿命测量系统测试NaYF4:Yb/Tm的上转换荧光寿命,激发光源选用980nm固体激光器,激光器调制频率为50Hz,积分时间为1μs,测试发射波长分别为345nm、450nm、475nm,分别如图3、图4、图5所示。

图3 发射波长345nm

图4 发射波长451nm

图5 发射波长475nm

结论:
    多光子参与的上转换发光过程能够将低频率的激发光转换成高频率的发射光,在能源、YL、环保和通信等领域都有着重要的应用。北京卓立汉光自主研发生产的OmniFluo“卓谱”荧光寿命测量系统,配备可调频980nm固体激光器(可根据客户需求,配置其它波长激光器)。当测试样品的上转换荧光光谱时,激光器工作于稳态模式,便于调节光路;当测试样品的上转换荧光寿命时,可直接对激光器进行调频,无需重新调节光路和样品的摆放位置,即可得到测试结果。这样既节省了换用激光器的调试时间,又保证了测量的准确定,是您测试上转换荧光以及荧光寿命的选择。


OmniFluo“卓谱”荧光寿命测量系统


【本文作者:分析仪器事业部(AID)应用研发部石广立工程师】


(来源:北京卓立汉光仪器有限公司)

2019-10-15 13:50:34 743 0
复合相变材料与液冷耦合的动力电池热管理系统的研究

HS-TGA-103热重分析仪主要由加热系统、称重系统、温度控制系统和数据处理系统组成。在测试过程中,样品被放置在加热系统内,通过温度控制系统进行升温。同时,称重系统监测样品的质量变化,并将数据传输至数据处理系统进行分析。通过测量样品质量随温度的变化,热重分析仪能够揭示材料的热稳定性和动力学行为等信息。

复合相变材料与液冷耦合的动力电池热管理系统的研究【南昌大学 刘自强】


复合相变材料与液冷耦合的动力电池热管理系统的研究
上海和晟 HS-TGA-103 热重分析仪


2023-07-05 10:58:55 90 0
上转换材料的荧光光谱分析法

序言

上转换发光材料 (Upconversion phosphors material,UPM) 是一类在长波长激发下发射短波长光的材料, 其特点是所吸收的光子能量低于发射的光子能量。 由于使用红外光作为激发光源, 此类材料在防伪标记、 激光探测和立体显示上的用途已经广为人知。 Z近几年来 , 科学家们又发现上转换发光材料有不易发生光漂白和发光强度高等优点 , 用在生物标记中可以大大提高检测灵敏度和线性范围, 因此上转换发光材料的荧光发射光谱是表征其性能的一个重要指标, 具有非常重要意义。


与传统典型的荧光发光过程( 只涉及一个基态和一个激发态)不同, 上转换过程需要许多中间态来累积低频的激发光子的能量。 其中主要有三种发光机制: 激发态吸收、 能量转换过程、 光子雪崩。 这些过程均是通过掺杂在晶体颗粒中的激活离子能级连续吸收一个或多个光子来实现的,而那些具有 f 电子和 d 电子的激活离子因具有大量的亚稳能级而被用来上转换发光。然而GX率的上转换过程,只能靠掺杂三价稀土离子实现,因其有较长的亚稳能级寿命。稀土离子的吸收和发射光谱主要来自内层 4f 电子的跃迁。 在外围 5s 和 5p 的电子的屏蔽下,其 4f 电子几乎不与基质发生相互作用, 因此掺杂的稀土离子的吸收和发射光谱与其自由离子相似,显示出极尖锐的峰( 半峰宽约 10-20nm) 。而这同时就对外部激发光源的波长有了很大的限制。激光荧光光谱技术用于化学检测领域具有信噪比高、灵敏度好、检测快速等优点,特别是对于上转换材料的发光检测。商业化的 980nm 激光光源系统恰巧与它的吸收相匹配,为上转换纳米材料提供了理想的激光激发光源。


PerkinElmer 是世界上Z主要的荧光分光光度计生产商,也是技术上Zling先的高端仪器供应商。PerkinElmer 公司是SJ采用脉冲氙灯做光源, 具有荧光、 磷光和化学发光三种测量模式, 在磷光和化学发光模式下, 仪器内部激发光源自动关闭, 这样就为 980nm 激光光源的使用提供了便利的条件, 也为上转换纳米材料的荧光发光测试提供了硬件基础, 而其它厂家大多数使用传统的连续氙灯, 不能通过软件将其关闭, 在使用激光光源时, 只能通过遮挡的方式将出光孔堵住; PerkinElmer 公司采用脉冲氙灯光源, 就可以很好的在内部光源与外部激光光源之间进行切换, 当需要使用外部激光光源系统时,只需要通过软件选择激光测定模式即可, 不需要通过其它物理遮挡方式, 来遮挡仪器原有的激发光源, 这是PerkinElmer 公司优于其它公司的重要技术之一。 这种操作不仅延长了原有氙灯的使用寿命, 而且也很好的限制了由于物理遮挡导致的杂散光影响; 另外, 由于采用了灵活的可拆卸的样品架套筒设计, 如图 1 所示, 不仅固定了激光光源的输出端, 使之与样品池垂直, 保证激光光源能够准确的照射到待测样品上而且, 在进行常规荧光测定时, 容易取下, 大大简化了操作的繁琐性。


硬件配置

主机: LS-55 型荧光分光光度计 ( 图 2)

附件: 激光光源及可拆卸样品池套筒(图 1)

图 1. 激光光源及可拆卸样品池架套筒

图 2. PerkinElmerLS-55 荧光光谱仪

样品测试

测试条件

测试模式: 激光测定模式

延迟时间: 0ms

扫描范围: 300-700nm

扫描速度: 1000nm/min


测试结果

改变不同条件测试 UCNP 上转换材料得到的荧光发射谱图, 如下图 3 所示。 从图可以看出样品在357nm、473nm、 645nm 有荧光发射峰, 这三个发射峰是 UCNP三个能级的光子发射, 其中在 473nm 处Z强, 且荧光发射峰窄且尖锐, 半峰宽大约 10nm, 测试结果令人满意。

图 3. 样品荧光发射谱图

结论

PerkinElmer 公司的 LS-55 荧光光谱仪连接激光做光源的荧光分析方法能够准确的测试上转换材料的荧光发射峰,测试结果良好, 为上转换材料的发光表征提供了wan美的解决方案。 该方法操作简单, 使用方便, 成本低廉, 能够满足绝大多数样品的测试, 并且易于拆卸, 也能满足常规样品的测试, 是一个非常实用的解决方案。



2020-02-24 10:17:49 595 0
偏光显微镜+热台有何应用?

偏光显微镜+热台有何应用?偏光显微镜是利用光的偏振特性对具有双折射性物质进行研究鉴定的必备仪器。它在医学上有广泛的用途,如观察齿、骨、头发及活细胞等等的结晶内含物,神经纤维、动物肌肉、植物纤维等的结构细节,分析病变过程。 它也可以观察无机化学中各种盐类的结晶状况。
      热台主要指一种用于对试样施加温度的精密仪器。并通过光学显微镜等其它仪器对样品观察或测试。用于显微镜下对样品加热的热台通称为显微镜热台。
它是地质、矿产、冶金、石油等部门和相关高校的高分子等专业最常用的专业实验仪器。
      偏光显微镜+加上热台系统可供广大用户通过偏光来观察物体在加热状态下的形变、色变及物体的三态转化,也可以判断熔点,溶剂化物,晶体与非晶等应用......

       

广州微域光学仪器有限公司供应的热台偏光显微镜型号:MXP6000-X4-E3ISP20000KPA

参数配置:

型号

MXP6000-X4-E3ISP20000KPA

目镜

大视野 WF10X(视场数Φ22mm)

物镜

无限远长工作距离平场偏光物镜

偏光POL PL L5X/0.12

偏光POL PL L10X/0.25

偏光POL PL L20X/0.40

偏光POL PL L50X/0.60

目镜筒

三目镜,倾斜30?,(内置检偏振片,可进行切换)

落射照明系统

高亮超长寿命LED,亮度可调

内置视场光阑、孔径光阑、滤色片转换装置,推拉式检偏器与起偏器

调焦机构

粗微动同轴调焦, 微动格值:2μm,带锁紧和限位装置

转换器 

四孔孔(内向式滚珠内定位)

载物台

机械移动式(尺寸:210mmX140mm,移动范围:75mmX50mm) 

透射照明系统

阿贝聚光镜  NA.1.25  可上下升降

集光器,卤素灯照明适用(内置视场光栏)

高亮超长寿命LED,亮度可调

热台

温控范围从室温-300°C;精度≤±0.2%°C

加热板尺寸Φ110mm,加温区域Φ32mm

模糊逻辑PID全电子固态模块,PTC发热材料

相机

芯片SONY 20M/IMX183(C) 1" USB3.0接口,2000万像素,成像接收面积1’’全画幅

像素大小:2.4umX2.4um FPS:15@5440x3648;50 @2736x1824;60@1824x1216

软件

Weiscope Wimage多功能版图像处理软件  版本X64,5.0 兼容WINXPSP3/7/8/10/VISTA/MAC

图像拍照/图像定时自拍/视频录制/黑白平衡/翻转旋转/ROI/直方图/平场暗场校正/几何测量

自动寻边/多图实时拼接/景深实时融合/Execel报告输出/测量数据保存再编辑/

自动计数/手动分割/结果输出/图像自动计数方式选择:分水岭/亮暗/直方图/颜色分割

电脑/选配

21”HDMI高清屏幕,固态硬盘,独立显卡,USB3.0数据接口,HDMI信号接口


实例拍摄


样品室温状态

加热融化过程

加热过程中晶体逐渐析出

熔点态恒温观测

自动计数

计数结果及excel导出



2022-09-27 11:51:45 306 0
【热点应用】ED-XRF分析锂离子电池正极材料

锂离子电池正极材料的容量和能量密度对电池的性能起着关键作用。而在正极材料的三元层状结构中,元素配比对材料的性能具有至关重要的影响,因此对正极材料中各种元素的准确定量是电池研发生产关键技术之一。 

使用何种分析手段去定量正极材料中的元素?要考虑诸多因素,除了检测速度、准确度、仪器稳定性等常见评价指标外,实验室安全和环保成本,样品前处理是否简单?检验设备的易用性以及最小化人为误差也是研发和生产质量控制中的不可忽视的问题。 

目前,常用的锂电池正极材料元素定量手段包括ICP-OES、ICP-MS、AAS以及XRF。 

因正极材料样品均质化的要求,ICP以及AAS需要液体进样,所以样品需要加入硝酸进行酸煮或微波消解成为液体。而这种前处理方法一方面存在消解不完全的情况,另一方面,废酸的处理也增加了实验室安全以及环保成本。此外,ICP方法只能分析痕量元素,所以样品需要较大的稀释倍数才能进样,这样也就带来了较大的稀释误差。 

这些检测问题该如何解决呢?我们来看看X射线荧光光谱法(XRF)检测锂离子电池正极材料的几点优势:

相对而言,XRF与ICP相比可以直接进样,不需要复杂的前处理步骤,检测速度快。且样品制备简单:对于固体即可使用松散粉末直接进行测试,也可简单压片或进行玻璃熔珠测试;对于液体样品,更可以使用液体杯直接原样测试。 

另一方面,XRF内部无复杂管路,光路简单,不会产生污染以及堵塞风险,检测浓度可以从ppm级至100%,对于正极材料而言,无论样品中的主量元素还是微量元素都能够进行准确定量,满足生产控制检测需求。

 

EDXRF在锂电行业正极材料中的应用

正如上文所述,在实际生产过程中,正极材料因为掺杂或者碳包覆,其他检测方法受制于常规酸很难消解样品,无法实现准确且稳定地测量。因此,X射线荧光光谱技术(XRF)越来越多地被锂电行业所接受并逐步应用。 

近些年,快速发展的能量色散X射线荧光光谱(EDXRF)技术作为XRF技术的前沿分支,以其体积紧凑、使用方便等优势得到了许多行业检测用户的认可。但在锂电行业还未得到广泛应用,究其主要原因,是由于普通能谱仪的检测性能在缺乏标准品的情况下,无法满足某些元素准确定量的检测需求。 

马尔文帕纳科作为X射线分析仪器的主要供应商,具有超过70年的行业经验。在XRF产品的设计以及制造方面有丰富的经验和独特的技术。其推出的高性能台式能谱仪 Epsilon4,装配了动态高通量X射线管、大面积高分辨SSD探测器和超高计数电路及全功能算法软件。其光路采用紧凑设计,可以获取最高的信号灵敏度和更快的响应速度,充分满足正极材料主量以及微量元素的测试需求。 


应用实例一:前驱体溶液实验分析

主要针对Ni(0-120g/L)、Co(0-120g/L)、Mn(0-120g/L)三种主量元素,Epsilon4 台式能谱仪拟合曲线相关系数均在0.9999以上。其工作曲线如下:

与ICP稳定性对比实验,Epsilon4 台式能谱仪对前驱体容量进行多次测量,稳定性以及精密度均优于ICP。


应用实例二:NCM三元材料实验分析

该实验是通过Epsilon4台式能谱仪针对NCM三元材料Ni(15-70%)、Co(5-30%)、Mn(5-30%)三种主量元素,采用压片和玻璃熔珠两种不同的制样方法进行重复性测试,Epsilon4 台式能谱仪拟合曲线相关系数均在0.9999以上。

实验中,分别对三元材料的主量元素平行测试了10次,可以看到不论玻璃熔珠还是压片的数据,其重复性RMS均小于0.01。

综上所述,马尔文帕纳科Epsilon4 台式能谱仪分析速度快、准确度高。与ICP对比具有更优异的精密度以及稳定性。针对正极材料不同的配方还配有具体的定制方案,是锂电行业正极材料元素分析检测值得信赖的工具。

马尔文帕纳科波长色散X射线荧光光谱仪因其强大的分析能力,除了满足常规元素日常分析工作外,同样可应用于锂例子电池正极材料中的元素定量分析,且针对LiFePO4、NCM主量以及添加元素检测均有具体的应用解决方案,我们将在下一篇推文“WD-XRF用于锂离子电池正极材料分析”中具体介绍,敬请期待。


2022-03-17 11:51:12 208 0
量子点和稀土纳米上转换发光的区别
 
2017-09-24 06:23:05 331 1
上转换发光纳米粒子为什么无生物背景荧光
 
2016-12-23 13:05:19 408 1
热点应用丨OLED的光致发光和电致发光共聚焦成像

要点



光致发光和电致发光是有机发光二极管(OLED)视觉显示发展的重要技术。

与共聚焦显微镜相结合,使用RMS1000共聚焦显微拉曼光谱仪对OLED器件的光电特性进行成像研究。
光谱和时间分辨成像获得了比宏观测试更详细的器件组成和质量信息。

介绍



近年来,有机发光二极管(OLED)已成为高端智能手机和电视全彩显示面板的领先技术之一1。使用量的快速增长是因为OLED提供了比液晶显示器(LCD)更卓 越的性能。例如,它们更薄、更轻、更灵活、功耗更低、更明亮2

在典型的OLED器件中,电子和空穴被注入到传输层中,然后在中心掺杂发光层中复合。这种复合产生的能量通过共振转移到掺杂分子中,从而使其发光。OLED发光的颜色取决于发光层中所掺杂分子的化学结构。当新的有机电致发光器件开发出来时,可以利用光致发光(PL)和电致发光(EL)光谱来表征单个元件和整个器件的光电特性。
在本文中,RMS1000共聚焦显微拉曼光谱仪用于表征四种成像模式下OLED器件的光电特性:PL、EL、时间分辨PL(TRPL)和时间分辨EL(TREL)。使用共聚焦显微拉曼光谱仪来表征OLED的光谱和时间分辨特性获得了比宏观测试更详细的信息。

材料和方法



测试样品为磷光OLED器件,由圣安德鲁斯大学有机半导体光电研究组提供。将样品放置在冷热台(LINKAM)上,通过两个钨探针连接到器件电极上实现成像。使用RMS1000共聚焦显微拉曼光谱仪进行PL、EL、时间分辨PL(TRPL)和时间分辨EL(TREL)成像,如图1。


图1  PL、TRPL、EL和TREL成像的实验装置。

将装载样品的冷热台放置在显微镜样品台上,如图2所示。对于PL测试,使用532 nm CW激光器和背照式CCD探测器;对于TRPL测试,使用外部耦合的EPL-405皮秒脉冲激光器、MCS模式和快速响应的PMT。

对于EL测试,使用Keithley 2450 SMU向OLED器件加电压,并用CCD探测器检测;对于TREL测试,使用Tektronix 31102 AFG向OLED加一系列短脉冲电压,使用MCS模式测试每个脉冲下的衰减。

图2  (a)安装在RMS1000上的冷热台;(b) OLED器件电致发光宽场成像。

测试结果与讨论



大面积光致发光和电致发光光谱成像

OLED首次采用PL和EL光谱相结合的方法进行研究。当使用共聚焦显微拉曼光谱仪成像时,可以表征材料在整个器件中的分布以及在发光强度和颜色均匀性方面的整体质量。图3中的PL成像和相应的光谱提供了器件上4个区域发光层分布的信息,还显示了电极的位置。


图3  (a)OLED器件的PL光谱强度成像;(b)a中标记的点1和点2的PL光谱。


白色和灰色代表PL强度,显示了有机发光层的位置。灰色区域为发光层被顶部电极覆盖的位置。在顶部电极穿过发光层的地方,PL强度降低为未覆盖区域强度的一半以下。这是由于顶部电极材料削弱了激光强度和光致发光强度。

对于EL成像,钨探针连接到与区域2相交的电极上。图4中得到的EL图像和相应的光谱表明了EL发光仅发生在区域2中的发光层与电极重叠的区域。在PL成像中,空间分辨率主要取决于样品上激光光斑的大小。而在EL成像中,由于没有激光,因此是通过改变共焦针孔直径来改变空间分辨率(将针孔直径减小到25 μm)。


图4  (a)OLED器件的EL光谱强度成像;(b)a中标记的点1和点2的EL光谱。


EL强度在整个有源像素上不均匀,这对器件的质量有影响。在区域外边缘有两个(白色)垂直条带,强度比其余部分强。此外,存在许多EL强度降低的非发光区域。这表明器件有缺陷,理想情况下,OLED将在每个像素上呈现出密集和均匀的发光。
高分辨率光致发光和电致发光光谱成像
为了进一步研究,使用PL和EL对EL有源像素上的较小区域(图5a和图5b)进行高分辨成像。图5b网格内的上部区域是发光层与电极重叠的地方,下部区域是单独的发光层。
图5c为 PL强度成像,再次表明被电极覆盖的发光层PL强度小于未覆盖的发光层。PL峰值波长图像(图5d)表明,有电极覆盖的发光层与未覆盖的发光层(611 nm)相比,PL发射峰发生红移(620 nm)。峰值波长的变化表明在不同的区域中能级不同。

图5  (a) OLED器件电致发光宽场成像;(b)a网格内的高分辨率宽场成像;(c)PL强度成像;(d)相同区域的PL峰值波长成像;(e)EL强度成像;(f)相同区域的EL峰值波长成像。


EL成像显示,与其余部分相比发射强度较弱的缺陷(图5e)波长发生明显红移(图5f)。这是由于缺陷处的EL能带的信号强度降低以及在662 nm处EL能带信号强度同时增加引起的。另外,在EL有源区域的最 底部的区域中,发生蓝移,这与在PL图像上看到的波长变化一致。
高分辨率时间分辨光致发光和电致发光成像
为获得额外信息,在同一区域进行TRPL和TREL成像,如图6所示。分别用激光脉冲和电脉冲,在MCS模式下测试614 nm处OLED的PL和EL衰减。利用单指数模型拟合衰减曲线。
在图6a的TRPL成像中,EL活性区域(上部区域)中的PL寿命比EL非活性区域(下部区域)中的PL寿命短大约200 ns。如图6c所示,分别为800 ns和600 ns。这里观察到与图4中PL强度和波长图像的类似梯度,沿图向下方向的发射强度增强,并且发生了蓝移。因此,根据TRPL数据可得:当光激发时,通过掺杂带可获得不同的能级。在图6b中的TREL成像中,整个区域的寿命相似,大约为470 ns。发现EL寿命显著短于相同区域的PL寿命。

图6   (a)OLED的时间分辨PL成像;(b)OLED的时间分辨EL成像;(c)a中选定区域的PL衰减曲线;(d)b中图像的EL衰减曲线。


结论



RMS1000共聚焦显微拉曼光谱仪用于测试OLED器件的PL、EL、TRPL和TREL成像。这些不同的成像模式提供了关于发光层和电极在整个器件中位置的详细信息,在工作条件下器件的发光强度和颜色均匀性,以及关于PL和EL过程中带隙能量的相对信息。


参考文献



1. A. Salehi et al., Recent Advances in OLED Optical Design, Adv. Funct. Mater., 2019, 29, 1808803, DOI: 10.1002/adfm.201808803.

2. J. M. Ha et al., Recent Advances in Organic Luminescent Materials with Narrowband Emission, NPG Asia Mater., 2021, 13, 1–36, DOI: 10.1038/s41427-021-00318-8.


天美分析更多资讯


2023-08-21 11:41:24 658 0
目前多肽的研究热点?
 
2014-12-10 20:05:28 377 1
冷( )热( )
是一个成语,所填的是一对同义词... 是一个成语,所填的是一对同义词 展开
2006-10-31 07:03:12 312 6
热冲击试验机冷水槽不显示温度怎么办
2016-03-16 00:47:04 327 2
热冲击试验机冷水槽不显示温度怎么办
2016-03-19 00:37:15 362 1
热点温度请教 什么是热点温度,热点温是度怎么变
 
2018-08-06 11:03:42 591 1
化学工程的研究热点有哪些
 
2018-11-17 03:49:46 167 0
稀土发光材料的发光机理
 
2018-11-29 17:06:09 311 0

4月突出贡献榜

推荐主页

最新话题

请您留言

感谢您的关注,当前客服人员不在线,请填写一下您的信息,我们会尽快和您联系。

提交