仪器网(yiqi.com)欢迎您!

| 注册登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

光子计数探头模块为什么没有增益调节能力?

滨松光子学商贸(中国)有限公司 2022-11-25 17:09:24 242  浏览
  • 欢迎大家来到《滨松光电知识小课堂》产品技术知识分享栏目,本栏目致力于将光电相关的产品技术知识掰开了,揉碎了,一点点与大家进行分享。本期话题光子计数探头模块为什么没有增益调节能力”。



    熟悉光电倍增管的客户都知道,我们可以通过调节倍增级电压来调节光电倍增管的增益,也可以称为调节光电倍增管的放大倍数。我们分别以光电倍增管裸管R928和光电倍增管模块H10721为例,前者可以调节工作电压来调节放大倍数,后者调节外部的增益电压来调节光电倍增管模块的放大倍数。



     R928调节电压和放大倍数之间的关系



    H10721调节电压和放大倍数之间的关系


    但是,很多客户都会问:

    常见的光子计数探头模块,比如H10682和CH299,他们也属于光电倍增管模块,为什么没有增益调节的功能呢?


    首先,光子计数探头模块不同于常见的光电倍增管模块,它是在电流型光电倍增管模块的基础上增加了光子信号处理电路。



    该电路能将单个光子激发的脉冲信号,经过放大、鉴别、整形后输出对应的光子数逻辑脉冲,所以,我们能够通过输出的脉冲数来进行光子的计数。



    当光电倍增管接收的光亮从一个很强的范围变到单个光子信号时,光电倍增管的输出会产生一个很明显的变化,可以参考以下的图。



    常规的光电倍增管模块由于后端没有信号处理电路,直接输出就是光电倍增管本身的信号。此时,如果我们对光电倍增管进行增益调节,可以有效地放大信号。



    光子计数探头模块,由于探测的光强特别微弱,基本都是以单个光子的形式出现,光电倍增管的输出就会如下图所示,每一个脉冲都代表一个光子信号。此时,如果我们增加对光子计数探头的增益,可以看到,单个光子激发脉冲的高度会显著提高。但是,对应的脉冲个数没有发生变化。也就是说,增加增益,不会对光子个数产生影响。



    同时,如果我们增加光子计数探头的增益,在放大光子激发脉冲高度的同时,也会放大噪声信号。如果放大的噪声信号超过后面鉴别器的检测下限,会引起由于引入噪声计数而导致测量的不准确。所以,光子计数探头需要一个合适的增益,在放大微弱信号的同时,还能够做到噪声和信号的分离,实现真正的光子信号探测输出。



    如下图所示,当我们改变光电倍增管的工作电压时,信噪比会在一段区间内基本保持不变,这段曲线也称之为坪特性曲线。在这段范围内,增益的增加对计数值没有明显的增加。所以,一般的光子计数探头的增益电压设置在坪区的电压范围之内,可以得到一个稳定的计数值。



    光子计数探头在出厂前,我们都已经将光子计数探头的工作电压调节在一个稳定的工作电压范围之内。所以,在收到货后,大家只需要提供供电电压,光子计数探头就可以正常工作了。


    本期主讲工程师介绍:滨松产品技术工程师马进发,毕业于西安理工大学,目前负责滨松光电倍增管、电子倍增器、MCP等产品的技术支持,主要应用方向为大气激光雷达、质谱等。擅长机械设计,已经通过国内CAXC计算机辅助认证和全 球CSWP工程师认证。



参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

光子计数探头模块为什么没有增益调节能力?

欢迎大家来到《滨松光电知识小课堂》产品技术知识分享栏目,本栏目致力于将光电相关的产品技术知识掰开了,揉碎了,一点点与大家进行分享。本期话题光子计数探头模块为什么没有增益调节能力”。



熟悉光电倍增管的客户都知道,我们可以通过调节倍增级电压来调节光电倍增管的增益,也可以称为调节光电倍增管的放大倍数。我们分别以光电倍增管裸管R928和光电倍增管模块H10721为例,前者可以调节工作电压来调节放大倍数,后者调节外部的增益电压来调节光电倍增管模块的放大倍数。



 R928调节电压和放大倍数之间的关系



H10721调节电压和放大倍数之间的关系


但是,很多客户都会问:

常见的光子计数探头模块,比如H10682和CH299,他们也属于光电倍增管模块,为什么没有增益调节的功能呢?


首先,光子计数探头模块不同于常见的光电倍增管模块,它是在电流型光电倍增管模块的基础上增加了光子信号处理电路。



该电路能将单个光子激发的脉冲信号,经过放大、鉴别、整形后输出对应的光子数逻辑脉冲,所以,我们能够通过输出的脉冲数来进行光子的计数。



当光电倍增管接收的光亮从一个很强的范围变到单个光子信号时,光电倍增管的输出会产生一个很明显的变化,可以参考以下的图。



常规的光电倍增管模块由于后端没有信号处理电路,直接输出就是光电倍增管本身的信号。此时,如果我们对光电倍增管进行增益调节,可以有效地放大信号。



光子计数探头模块,由于探测的光强特别微弱,基本都是以单个光子的形式出现,光电倍增管的输出就会如下图所示,每一个脉冲都代表一个光子信号。此时,如果我们增加对光子计数探头的增益,可以看到,单个光子激发脉冲的高度会显著提高。但是,对应的脉冲个数没有发生变化。也就是说,增加增益,不会对光子个数产生影响。



同时,如果我们增加光子计数探头的增益,在放大光子激发脉冲高度的同时,也会放大噪声信号。如果放大的噪声信号超过后面鉴别器的检测下限,会引起由于引入噪声计数而导致测量的不准确。所以,光子计数探头需要一个合适的增益,在放大微弱信号的同时,还能够做到噪声和信号的分离,实现真正的光子信号探测输出。



如下图所示,当我们改变光电倍增管的工作电压时,信噪比会在一段区间内基本保持不变,这段曲线也称之为坪特性曲线。在这段范围内,增益的增加对计数值没有明显的增加。所以,一般的光子计数探头的增益电压设置在坪区的电压范围之内,可以得到一个稳定的计数值。



光子计数探头在出厂前,我们都已经将光子计数探头的工作电压调节在一个稳定的工作电压范围之内。所以,在收到货后,大家只需要提供供电电压,光子计数探头就可以正常工作了。


本期主讲工程师介绍:滨松产品技术工程师马进发,毕业于西安理工大学,目前负责滨松光电倍增管、电子倍增器、MCP等产品的技术支持,主要应用方向为大气激光雷达、质谱等。擅长机械设计,已经通过国内CAXC计算机辅助认证和全 球CSWP工程师认证。



2022-11-25 17:09:24 242 0
为什么用光电倍增管来进行光子计数?
 
2011-04-04 04:52:44 336 2
什么叫光子计数技术
 
2016-07-10 19:59:50 406 1
温湿度变送器hmw82为什么没有探头
 
2015-09-01 12:56:39 360 1
什么叫做增益?怎样对美泰全数字式超声波探伤仪进行增益调节?
 
2017-11-25 19:38:06 1350 1
磁粉探伤仪探头可调节吗

磁粉探伤仪探头可调节吗

磁粉探伤仪是一种常用于金属表面缺陷检测的设备,广泛应用于制造、航空、石油、化工等行业。随着工业对精度和效率的不断要求,磁粉探伤仪的性能和可操作性也得到了不断提升。本文将探讨磁粉探伤仪探头是否可调节的问题,分析其结构设计、调节功能以及实际操作中的影响,以帮助用户更好地理解这一设备的可调性和使用技巧。

磁粉探伤仪探头的基本构造

磁粉探伤仪的探头是进行缺陷检测的核心部件,其主要功能是产生磁场并检测表面或近表面缺陷的存在。常见的探头类型包括电磁铁型探头、环形探头和手持探头等。不同类型的探头在结构上有所差异,但其核心功能是通过电磁感应原理来探测金属表面的裂纹、气孔等缺陷。

磁粉探伤仪探头是否可调节

磁粉探伤仪的探头在设计上通常具有一定的可调性,但这种可调节性取决于设备的类型和探头的设计。对于一些手持式探头,操作人员可以通过调节探头的距离、角度以及磁场强度来调整其检测效果。这种调整可以优化探伤仪的检测范围和灵敏度,以适应不同工件表面形态和缺陷类型的检测需求。

传统的探头大多数并不具备太多的物理调节功能,而是依赖于设备本身的自动调节和设置来优化检测效果。例如,某些磁粉探伤仪会通过调整电流的大小来改变探头产生的磁场强度,进而影响检测效果。现代一些高端磁粉探伤仪可能配备可调节探头,通过软件控制来实现更的检测范围调整。

探头调节的实际影响

探头的调节主要体现在以下几个方面:探头的磁场强度调节可以提高或降低探伤仪的检测灵敏度。磁场强度过强可能会导致检测到更多不相关的背景噪声,而磁场强度过弱则可能遗漏一些微小的缺陷。探头的角度调节有助于探测不同方向和位置的缺陷,尤其是在一些复杂形状的工件表面,角度的变化能够提高检测的全面性和准确性。探头距离的调节同样影响着磁粉的覆盖效果,不同距离下的磁粉涂布均匀性和清晰度可能会有所不同,从而直接影响到缺陷的显现效果。

实际应用中的调节需求

在实际应用中,磁粉探伤仪的探头调节需求与工件的形状、材质和检测要求密切相关。例如,针对大型金属结构件,可能需要调节探头的磁场强度来确保覆盖广泛的检测区域。而对于精密的小型零件,则可能更注重探头角度和距离的调整,以确保对微小缺陷的高灵敏度检测。不同工件表面处理工艺的差异也可能影响探头的调节需求,如涂层较厚或存在油污的工件表面,需要调节探头以确保检测精度。

结论

磁粉探伤仪的探头在一定范围内是可调节的,尤其在一些高端型号中,探头的调节功能能够提高设备的适应性和检测效果。探头的调节功能不仅仅是设备性能的体现,更依赖于操作人员的经验和技巧。为了确保磁粉探伤仪在不同工况下的佳表现,用户需要根据实际检测任务合理调整探头的磁场强度、角度和距离等参数。通过精确调节,磁粉探伤仪能够更好地满足不同检测需求,提高表面缺陷检测的精度和效率。因此,理解探头可调节的功能并熟练掌握其操作,对于提升磁粉探伤仪的工作效能至关重要。

2025-01-02 12:15:11 15 0
什么是功率增益?电压增益?
什么是频带?什么是功率放大器的频率特性??... 什么是频带? 什么是功率放大器的频率特性?? 展开
2007-03-25 04:52:50 611 3
双光子显微镜为什么穿透能力强
 
2016-11-08 15:12:16 277 1
荧光显微系统的新高度——Luminosa单光子计数共聚焦显微

过去的几十年中,德国PicoQuant的研发人员一直致力于制造最具定量性和重复性的时间分辨荧光显微镜系统。现在他们终于迈出了这一步,完成了一套更易于使用、且不影响灵敏度的系统。该系统打破常规,无需培训物理学支持人员便可轻松使用。全新的Luminosa可以让每个分子生物物理学或结构生物学研究人员轻松地将单分子和时间分辨荧光显微镜的方法添加到他们的“工具箱”中。


Luminosa系统的主要功能包括一键式自动对准程序和基于上下文的直观工作流程。例如,系统可以自动识别单个分子,或者它可以自动确定单个分子FRET (smFRET) 的校正因子。


对于经验丰富的专家,它仍具有先进的灵活性。所有光机组件均可访问,数据以开放格式存储,工作流程和图形用户界面均可定制。用户可以完全访问实验参数,例如可调节的观察量。


全新的Luminosa本身就是一套时间分辨荧光显微的多功能“工具箱”。它用于单分子水平的动态结构生物学研究。这些方法包括荧光寿命成像 (FLIM)、用于快速过程的rapidFLIMHiRes、FLIM-FRET、单分子FRET(突发和时间跟踪分析)、荧光相关光谱 (FCS)、各向异性成像和微分干涉对比 (DIC) 成像。


随着时间分辨荧光显微技术的用户群体不断扩大,对高重复性、高准确性和宝贵实践经验规则的需求变得尤为明显。Luminosa已经包含了科学家集体努力制定的经验指南,例如来自于单分子FRET群体在基准研究中的经验指南。

Luminosa 是一款将超高数据质量与超简日常操作相结合的单光子计数共聚焦显微镜。它可以轻松集成到任何研究人员的“工具箱”中,成为开始探索使用时间分辨荧光方法科学家以及想要突破极限专家的省时、可靠的“伙伴”。它是一个真正的显微镜系统,每个人都可以依赖。


产品特点:
◆ 全软件控制共聚焦系统,基于倒置显微镜
◆ 激光波长从375到1064 nm可选
◆ VarPSF:观察量高精度调节,用于FCS和单分子FRET实验
◆ 电动平移台,可在传动和FLIM模式下进行“图像拼接”
◆ 扫描选项:FLIMbee振镜扫描和压电物镜扫描
◆ 最多可集成SPAD, PMT或Hybrid-PMT组成相互独立的6通道探测单元
◆ <700 ps通道的死区时间和5 ps时间分辨率
◆ 一键式自动对齐,从而获得一致的最佳性能

◆ 借助GPU加速算法和基于上下文工作流程的FCS、FLIM和单分子检测,以最少的用户交互快速获得结果


产品领域:

◆ 单分子水平的动态结构生物学
◆ 相分离驱动的细胞机制
◆ 环境传感

◆ 细胞膜动力学和结构的映射


核心方法:
◆ 荧光寿命成像 (FLIM)
◆FLIM-FRET – 基于寿命的Förster共振能量转移
◆smFRET – 单分子Förster共振能量转移
◆荧光相关光谱(FCS)
◆荧光寿命相关光谱(FLCS)
◆荧光互相关光谱(FCCS)

◆各向异性成像


为此,德国PicoQuant公司特邀产品经理Evangelos Sisamakis博士在2022年10月6日-10月7日进行2场线上新品演示推广研讨会,重点介绍Luminosa是如何让每个分子生物物理学或结构生物学研究人员轻松地将单分子和时间分辨荧光显微镜的方法添加到他们的“工具箱”中,成为开始探索使用时间分辨荧光方法的科学家以及想要突破极限专家的省时、可靠的“伙伴”。欢迎各位有兴趣的研究人员报名注册https://www.picoquant.com/events/workshops-and-courses/category/webinar#luminosa 。

2022-09-26 14:33:37 213 0
增益耦合型激光器为什么更抗反射
 
2017-08-12 00:41:11 317 1
为什么滤波器增益实验和理论值有误差
 
2018-03-31 14:57:50 1134 1
猫眼为什么有夜视能力
 
2014-03-25 07:26:23 307 1
PF32-MLA微透镜版SPAD阵列+TDC单光子计数相机新上市

PF32不是一个单点的SPAD探测器,而是一个1024个单光子敏感SPAD像素阵列,具有超快的55ps时间分辨率、功能强大,高度紧凑的单光子计数探测器阵列。由于55ps TDC电路包围着每个SPAD像素,导致标准版PF32单光子计数相机的光学填充因子只有1.5%。虽然55ps的时间分辨率225kfps (8-bit)的吞吐量对于许多应用至关重要,但1.5%的填充因子不免让人觉得有些“捉襟见肘”,给科研人员带来了极大的挑战。

为了有效的改善填充因子,Photon Force经过持续不断的努力,新推出了PF32-MLA微透镜版本。该微透镜版本是PF32 SPAD阵列+TDC 单光子计数相机的升级版本——每个SPAD像素上都有一个小透镜(微透镜),从而有效地将待测光信号聚焦到每个SPAD像素上。这使得PF32-MLA微透镜版SPAD阵列+TDC 单光子计数相机有效填充因子提高到>12%(均值)。

产品特点

• 新增:有效填充因子提高到>12%(均值)

• 32×32像素 SPAD + 时间相关单光子计数(TCSPC)阵列

• 每像素具有独立光子计数

• 光子计数 和 TCSPC 双工作模式

• Typ, 55ps分辨率

• 8bit/10bit TDC, 最大包含255/1,023个时间通道

• 8bit/16bit 光子计数深度

• 高达150k/225k fps传感器操作和读取

• 同步数据采集和读出(无帧间死时间)

• 外部激光同步输入,用于TDC STOP信号

• 单5V电源(附带)

• USB3 接口

产品应用

• 量子成像 Quantum Imaging

• 荧光寿命成像 FLIM

• 激光雷达 LIDAR

• 单光子成像

产品参数

如需了解更多详情,请随时咨询我们的销售工程师!

东隆科技作为Photon Force国内独*家代理公司,在技术、服务、价格上都具有优势。如果您有任何产品相关的问题,欢迎随时来电垂询,我们将为您提供专业的技术支持与产品服务。

2022-04-19 10:44:29 248 0
为什么要用伺服定位模块
 
2017-11-24 22:57:37 290 1
金鱼为什么老是探头
 
2018-11-12 23:27:17 374 0
什么是增益介质
什么是增益介质
2016-12-01 08:52:07 529 1
伺服电机如何调增益
我做销售,给客户解决实际问题时,伺服电机工作要达到理想状态还真不好调... 我做销售,给客户解决实际问题时,伺服电机工作要达到理想状态还真不好调 展开
2017-11-27 20:25:41 1031 1

4月突出贡献榜

推荐主页

最新话题