仪器网(yiqi.com)欢迎您!

| 注册登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

低场核磁共振横相弛豫时间与横向弛豫特性

苏州纽迈分析仪器 2022-11-18 12:32:37 183  浏览
  • 低场核磁共振横相弛豫时间与横向弛豫特性

    在核磁共振现象中,弛豫是指原子核发生共振且处在高能状态时,当射频脉冲停止后,将迅速恢复到原来低能状态的现象。恢复的过程即称为弛豫过程,它是一个能量转换过程,需要一定的时间反映了质子系统中质子之间和质子周围环境之间的相互作用。

    完成弛豫过程分两步进行,即纵向磁化强度矢量Mz恢复到最初平衡状态的M0和横向磁化强度Mxy要衰减到零,这两步是同时开始但独立完成的,下面将简单介绍低场核磁共振横相弛豫过程和低场核磁共振横相弛豫时间T2。

    低场核磁共振横相弛豫过程

    在射频脉冲的作用下,所有质子的相位都相同,它们都沿相同的方向排列,以相同的角速度(或角频率)绕外磁场进动。当射频脉冲停止后,同相位的质子彼此之间将逐渐出现相位差,即失相位。我们把质子由同相位逐渐分散zui终均匀分布,宏观表现为其横向磁化强度矢量Mxy从蕞大(对于π/2脉冲来说,为M0)逐渐衰减为0的过程称为横向弛豫过程。

    低场核磁共振横相弛豫时间与横向弛豫特性

    低场核磁共振横相弛豫时间又称自旋-自旋弛豫时间,通常用Mxymax衰减63%时所需的时间,所以经过一个T2时间,Mxy还存在37%在实际工作中,一般认为Mxy经过5T2时间已基本衰减为零。下图表示π/2脉冲之后Mxy随时间的衰减曲线:

    在MRI中,通常用横向弛豫时间T2来描述横向磁化强度Mxy衰减的快慢,如果T2小就说明横向磁化强度Mxy衰减快。否则,若T2长就说明横向磁化强度Mxy衰减慢。

    在给定外磁场中,T2仅取决于组织,不同的组织由于其自旋-自旋相互作用效果不同,而这种效果取决于质子间的接近程度。由于不同组织自旋-自旋相互作用效果不同,所以不同组织的T2不同,固体中的T2比液体中的T2短的多。特别注意的是:横向弛豫时间T2比纵向弛豫时间T1快5-10倍,也就是说在纵向磁化强度恢复到M0时,横向磁化强度早已经衰减为零。

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

低场核磁共振横相弛豫时间与横向弛豫特性

低场核磁共振横相弛豫时间与横向弛豫特性

在核磁共振现象中,弛豫是指原子核发生共振且处在高能状态时,当射频脉冲停止后,将迅速恢复到原来低能状态的现象。恢复的过程即称为弛豫过程,它是一个能量转换过程,需要一定的时间反映了质子系统中质子之间和质子周围环境之间的相互作用。

完成弛豫过程分两步进行,即纵向磁化强度矢量Mz恢复到最初平衡状态的M0和横向磁化强度Mxy要衰减到零,这两步是同时开始但独立完成的,下面将简单介绍低场核磁共振横相弛豫过程和低场核磁共振横相弛豫时间T2。

低场核磁共振横相弛豫过程

在射频脉冲的作用下,所有质子的相位都相同,它们都沿相同的方向排列,以相同的角速度(或角频率)绕外磁场进动。当射频脉冲停止后,同相位的质子彼此之间将逐渐出现相位差,即失相位。我们把质子由同相位逐渐分散zui终均匀分布,宏观表现为其横向磁化强度矢量Mxy从蕞大(对于π/2脉冲来说,为M0)逐渐衰减为0的过程称为横向弛豫过程。

低场核磁共振横相弛豫时间与横向弛豫特性

低场核磁共振横相弛豫时间又称自旋-自旋弛豫时间,通常用Mxymax衰减63%时所需的时间,所以经过一个T2时间,Mxy还存在37%在实际工作中,一般认为Mxy经过5T2时间已基本衰减为零。下图表示π/2脉冲之后Mxy随时间的衰减曲线:

在MRI中,通常用横向弛豫时间T2来描述横向磁化强度Mxy衰减的快慢,如果T2小就说明横向磁化强度Mxy衰减快。否则,若T2长就说明横向磁化强度Mxy衰减慢。

在给定外磁场中,T2仅取决于组织,不同的组织由于其自旋-自旋相互作用效果不同,而这种效果取决于质子间的接近程度。由于不同组织自旋-自旋相互作用效果不同,所以不同组织的T2不同,固体中的T2比液体中的T2短的多。特别注意的是:横向弛豫时间T2比纵向弛豫时间T1快5-10倍,也就是说在纵向磁化强度恢复到M0时,横向磁化强度早已经衰减为零。

2022-11-18 12:32:37 183 0
低场核磁共振横相弛豫时间

低场核磁共振横相弛豫时间

在核磁共振现象中,弛豫是指原子核发生共振且处在高能状态时,当射频脉冲停止后,将迅速恢复到原来低能状态的现象。恢复的过程即称为弛豫过程,它是一个能量转换过程,需要一定的时间反映了质子系统中质子之间和质子周围环境之间的相互作用。

完成弛豫过程分两步进行,即纵向磁化强度矢量Mz恢复到最初平衡状态的M0和横向磁化强度Mxy要衰减到零,这两步是同时开始但独立完成的,下面将简单介绍低场核磁共振横相弛豫过程和低场核磁共振横相弛豫时间T2。

低场核磁共振横相弛豫过程

在射频脉冲的作用下,所有质子的相位都相同,它们都沿相同的方向排列,以相同的角速度(或角频率)绕外磁场进动。当射频脉冲停止后,同相位的质子彼此之间将逐渐出现相位差,即失相位。我们把质子由同相位逐渐分散zui终均匀分布,宏观表现为其横向磁化强度矢量Mxy从zui大(对于π/2脉冲来说,为M0)逐渐衰减为0的过程称为横向弛豫过程。

低场核磁共振横相弛豫时间

低场核磁共振横相弛豫时间又称自旋-自旋弛豫时间,通常用Mxymax衰减63%时所需的时间,所以经过一个T2时间,Mxy还存在37%在实际工作中,一般认为Mxy经过5T2时间已基本衰减为零。下图表示π/2脉冲之后Mxy随时间的衰减曲线:

在MRI中,通常用横向弛豫时间T2来描述横向磁化强度Mxy衰减的快慢,如果T2小就说明横向磁化强度Mxy衰减快。否则,若T2长就说明横向磁化强度Mxy衰减慢。

在给定外磁场中,T2仅取决于组织,不同的组织由于其自旋-自旋相互作用效果不同,而这种效果取决于质子间的接近程度。由于不同组织自旋-自旋相互作用效果不同,所以不同组织的T2不同,固体中的T2比液体中的T2短的多。特别注意的是:横向弛豫时间T2比纵向弛豫时间T1快5-10倍,也就是说在纵向磁化强度恢复到M0时,横向磁化强度早已经衰减为零。

2022-11-21 12:02:00 146 0
低场核磁横相弛豫时间

低场核磁横相弛豫时间

在核磁共振现象中,弛豫是指原子核发生共振且处在高能状态时,当射频脉冲停止后,将迅速恢复到原来低能状态的现象。恢复的过程即称为弛豫过程,它是一个能量转换过程,需要一定的时间反映了质子系统中质子之间和质子周围环境之间的相互作用。

完成弛豫过程分两步进行,即纵向磁化强度矢量Mz恢复到最初平衡状态的M0和横向磁化强度Mxy要衰减到零,这两步是同时开始但独立完成的,下面将简单介绍低场核磁横相弛豫过程和低场核磁横相弛豫时间T2。

低场核磁横相弛豫过程

在射频脉冲的作用下,所有质子的相位都相同,它们都沿相同的方向排列,以相同的角速度(或角频率)绕外磁场进动。当射频脉冲停止后,同相位的质子彼此之间将逐渐出现相位差,即失相位。我们把质子由同相位逐渐分散zui终均匀分布,宏观表现为其横向磁化强度矢量Mxy从蕞大(对于π/2脉冲来说,为M0)逐渐衰减为0的过程称为横向弛豫过程。

低场核磁横相弛豫时间

低场核磁横相弛豫时间又称自旋-自旋弛豫时间,通常用Mxymax衰减63%时所需的时间,所以经过一个T2时间,Mxy还存在37%在实际工作中,一般认为Mxy经过5T2时间已基本衰减为零。下图表示π/2脉冲之后Mxy随时间的衰减曲线:

在MRI中,通常用横向弛豫时间T2来描述横向磁化强度Mxy衰减的快慢,如果T2小就说明横向磁化强度Mxy衰减快。否则,若T2长就说明横向磁化强度Mxy衰减慢。

在给定外磁场中,T2仅取决于组织,不同的组织由于其自旋-自旋相互作用效果不同,而这种效果取决于质子间的接近程度。由于不同组织自旋-自旋相互作用效果不同,所以不同组织的T2不同,固体中的T2比液体中的T2短的多。特别注意的是:横向弛豫时间T2比纵向弛豫时间T1快5-10倍,也就是说在纵向磁化强度恢复到M0时,横向磁化强度早已经衰减为零。

2022-11-16 14:50:14 98 0
岩石孔隙流体的核磁共振弛豫机制

岩石孔隙流体的核磁共振弛豫机制


自由弛豫、表面弛豫和扩散弛豫3种不同的弛豫机制存在于岩石孔隙流体的核磁共振弛豫中,一般三种弛豫行为同时存在的。


1、自由弛豫

自由弛豫,即流体特有的体弛豫现象,其弛豫时间由流体物理特性(粘度、化学成分等)及流体所处的环境(温度、压力等)决定。

在石油工业核磁研究过程中,由于岩石表面为固体,通常岩石孔隙内的流体表面弛豫比体弛豫强。然而当亲水岩石孔隙中油气属于非润湿相,岩石中存在裂缝导致流体与固体表面接触较少,以及稠油等流体粘度较大的情况下,流体与岩石孔隙之间自由弛豫现象不可忽视,此时需要同时考虑自由弛豫和表面弛豫的影响。


2、表面弛豫

岩石孔隙表面的弛豫机制即为表面弛豫,具体表现为孔隙流体与岩石固体表面之间的弛豫现象。


3、扩散弛豫

分子处于布朗运动过程中会进行自扩散运动,扩散弛豫即为质子在梯度磁场中,由于分子扩散引起的弛豫特性。

岩石中孔隙流体的类型、孔隙尺寸、孔隙发育结构、孔隙表面岩石物理性质以及岩石颗粒表面润湿性等条件决定了3种弛豫机制对于孔隙内流体是否起作用。

通常对于亲水岩石来说,孔隙中水的T2弛豫时间主要由表面弛豫决定;对于稠油来说,其T2弛豫主要由自由弛豫决定;而轻质油的T2弛豫时间则由自由弛豫和扩散弛豫共同决定,并与油的粘度有关;天然气由于气体分子的扩散特性,其T2弛豫时间主要受控于扩散弛豫。


2022-04-11 15:52:58 162 0
低场核磁弛豫技术用于CMP抛光液的原位分散性检测

低场核磁弛豫技术用于CMP抛光液的原位分散性检测

CMP 全称为 Chemical Mechanical Polishing,即化学机械抛光。该技术是半导体晶圆制造的必备流程之一,对高精度、高性能晶圆制造至关重要。抛光液的主要成分包括研磨颗粒、PH值调节剂、氧化剂、分散剂等。从成分中我们就大概知道了抛光液是一种对分散要求很高的纳米材料悬浮液,所以研磨过程中对颗粒的尺寸变化以及颗粒在悬浮液中的分散性都有着极其严苛的要求。



低场核磁弛豫技术用于悬浮液中颗粒尺寸变化和颗粒分散性检测

低场核磁弛豫技术以水分子(溶剂)为探针,可以实时检测悬浮液体系中水分子的状态变化。

低场核磁弛豫技术可以区分出纳米颗粒与溶剂的固液界面间那一层薄薄的表面溶剂分子,当颗粒尺寸或颗粒分散性发生变化时,颗粒表面的溶剂分子也会发生相应的变化。

低场核磁弛豫技术可以灵敏的检测到这这种变化状态和变化过程,从而可以快速地评价例如抛光液以及相关悬浮液样品的分散性和悬浮液中颗粒尺寸的变化过程。



低场核磁弛豫技术与传统氮气吸附法有哪些差异?


在低场核磁弛豫技术还未应用于抛光液领域之前,最常用的方法是用氮气吸附法来表征颗粒的比表面积。但是在实际的研发与生产过程中,研究人员发现就算氮气吸附法表征的研磨颗粒的比表面积非常稳定,抛光过程中还是会发生抛光液性能不稳定的情况。

这种情况很可能是研磨颗粒在溶剂体系中发生了团聚,进而发生了尺寸上的变化而导致zui终研磨性能的问题。低场核磁弛豫技术可直接用于研磨液原液的分散性检测,可以快速评价悬浮液体系的分散性而被广泛应用于CMP抛光液的研发与生产控制中。



低场核磁弛豫技术还能用于哪些领域?

低场核磁弛豫技术除了用于半导体CMP抛光液,还可以用于国家正大力扶持的新能源电池浆料,光伏产业的导电银浆,石墨烯浆料,电子浆料等新材料领域。这些方向都非常适合采用低场核磁弛豫技术来研究其原液的分散性、稳定性。


低场核磁弛豫分析仪:

2022-04-01 16:35:59 194 0
核磁共振弛豫时间与什么有关

核磁共振弛豫时间与什么有关

什么是弛豫时间?

弛豫时间,即达到热动平衡所需的时间。是动力学系统的一种特征时间。系统的某种变量由暂态趋于某种定态所需要的时间。在统计力学和热力学中,弛豫时间表示系统由不稳定定态趋于某稳定定态所需要的时间。

什么是核磁共振弛豫时间?

要了解核磁共振弛豫时间,首先了解一些核磁共振基本原理:核磁共振从字面意思可以理解为原子核在磁场中发生共振。一般核磁共振中的原子核是指氢原子核。磁是指磁场环境,在均衡稳定的磁场里面,氢原子核会有会以固定的频率发生进动,进动频率与磁场强度成正比。共振是指外加频率与氢原子核在磁场中的固有频率相等时,氢原子核吸收能量发生核磁共振。

核磁共振发生的过程,其实是原子核吸收射频能量的过程,当射频脉冲关闭后,吸收能量的原子核会释放吸收的能量,经过一定的弛豫过程,随着时间的推移,蕞终恢复到平衡状态。原子核释放能量所需要的时间就对应核磁共振弛豫时间。

核磁共振弛豫时间有两种即T1和T2

T1为纵向驰豫时间,纵向磁化强度恢复的时间常数T1称为纵向弛豫时间(又称自旋-晶格弛豫时间)。

t2为横向弛豫时间,横向磁化强度消失的时间常数T2称为横向弛豫时间(又称自旋-自旋弛豫时间)。

核磁共振弛豫时间与什么有关:

核磁共振弛豫时间T1:

弛豫过程是能量释放的过程,T1弛豫中能量释放到哪里了呢?其名字告诉我们答案,spin-lattice,自旋晶格,晶格相当于指与H原子排列在一起组成的晶格,所以,能量释放到周围的晶格中。T1弛豫与周围分子的运动息息相关。T1可以研究慢速分子运动,例如金属离子的螯合状态、蛋白质聚集、多孔材料表面动力学等等。

核磁共振弛豫时间T2;

T2,自旋-自旋弛豫。归纳起来就是因为各个H质子的拉莫尔频率(或者说相位)不尽相同,当撤去射频脉冲后,质子由聚到散的过程。

影响核磁共振弛豫时间T2的因素:

1.内部因素

分子运动:分子运动越慢,T2越小;例如冰和固体;

分子尺寸:分子尺寸越大,T2越小;例如食品中淀粉等大分子的弛豫时间比水和油脂短得多。

分子结合状态:结合越紧密,T2越小;食品中水的多层结构理论。

2. 外部因素

磁场不均匀:千万不要小看这个因素,磁场不均匀会加速散相过程(使得H质子之间的差异更大),从而测得的T2比实际的T2衰减的快的多的多。

影响核磁共振弛豫时间T1与T2的关系

2022-12-14 19:56:36 192 0
核磁共振弛豫时间与什么有关

核磁共振弛豫时间与什么有关

什么是弛豫时间?

弛豫时间,即达到热动平衡所需的时间。是动力学系统的一种特征时间。系统的某种变量由暂态趋于某种定态所需要的时间。在统计力学和热力学中,弛豫时间表示系统由不稳定定态趋于某稳定定态所需要的时间。

什么是核磁共振弛豫时间?

要了解核磁共振弛豫时间,首先了解一些核磁共振基本原理:核磁共振从字面意思可以理解为原子核在磁场中发生共振。一般核磁共振中的原子核是指氢原子核。磁是指磁场环境,在均衡稳定的磁场里面,氢原子核会有会以固定的频率发生进动,进动频率与磁场强度成正比。共振是指外加频率与氢原子核在磁场中的固有频率相等时,氢原子核吸收能量发生核磁共振。

核磁共振发生的过程,其实是原子核吸收射频能量的过程,当射频脉冲关闭后,吸收能量的原子核会释放吸收的能量,经过一定的弛豫过程,随着时间的推移,蕞终恢复到平衡状态。原子核释放能量所需要的时间就对应核磁共振弛豫时间。

核磁共振弛豫时间有两种即T1和T2

T1为纵向驰豫时间,纵向磁化强度恢复的时间常数T1称为纵向弛豫时间(又称自旋-晶格弛豫时间)。

t2为横向弛豫时间,横向磁化强度消失的时间常数T2称为横向弛豫时间(又称自旋-自旋弛豫时间)。

核磁共振弛豫时间与什么有关:

核磁共振弛豫时间T1:

弛豫过程是能量释放的过程,T1弛豫中能量释放到哪里了呢?其名字告诉我们答案,spin-lattice,自旋晶格,晶格相当于指与H原子排列在一起组成的晶格,所以,能量释放到周围的晶格中。T1弛豫与周围分子的运动息息相关。T1可以研究慢速分子运动,例如金属离子的螯合状态、蛋白质聚集、多孔材料表面动力学等等。

核磁共振弛豫时间T2;

T2,自旋-自旋弛豫。归纳起来就是因为各个H质子的拉莫尔频率(或者说相位)不尽相同,当撤去射频脉冲后,质子由聚到散的过程。

影响核磁共振弛豫时间T2的因素:

1.内部因素

分子运动:分子运动越慢,T2越小;例如冰和固体;

分子尺寸:分子尺寸越大,T2越小;例如食品中淀粉等大分子的弛豫时间比水和油脂短得多。

分子结合状态:结合越紧密,T2越小;食品中水的多层结构理论。

2. 外部因素

磁场不均匀:千万不要小看这个因素,磁场不均匀会加速散相过程(使得H质子之间的差异更大),从而测得的T2比实际的T2衰减的快的多的多。

影响核磁共振弛豫时间T1与T2的关系

2022-12-14 19:57:54 179 0
快速弛豫分析仪测试磁性纳米颗粒的弛豫率

快速弛豫分析仪测试磁性纳米颗粒的弛豫率

磁共振造影剂:

根据不同磁性物质主要作用于Tl或T2加权造影成像,造影剂同样分为Tl造影剂或T2造影剂。国外造影剂的研究十分活跃,已有多种造影剂投入生产并进入了临床应用。目前已经被食品药品监督管理局批准上市的基于钆配合物的造影剂有7种。磁针造影剂的需求量还在迅速增加。因此,新型造影剂的研制与开发具有非常重要而深远的意义。

快速弛豫分析仪测试磁性纳米颗粒的弛豫率

弛豫效率是超顺磁性氧化铁对比剂关键指标之一。弛豫效率高的样品,可以使用最少的量达到最为好的效果;在造影剂研究领域,纽迈磁共振快速弛豫分析仪可测试方便的测试造影剂T1、T2弛豫时间,并可对试管样品进行成像,提供定量和定性评价数据,为造影剂产品的研发与改进提供快速可靠的检测手段。

造影剂弛豫率r1测试:

用反转恢复序列(IR)测量其纵向弛豫时间,得到原始数据的恢复时间(t)及其相应的幅度值M(t),利用单指数模型M(t)=M(0)(1-2e-t/T1)拟合曲线t—M(t)可以得到纵向弛豫时间。

2022-11-18 12:03:51 101 0
lf-nmr/mri 低场核磁共振

低场核磁共振(Low-Field Nuclear Magnetic Resonance,LF-NMR)或低场核磁共振成像(Low-Field MRI)是指在相对较低的磁场强度下进行的核磁共振技术或成像技术。相对于传统的高场核磁共振技术(如1.5T或3T),低场核磁共振通常指磁场强度在0.1T到1.5T范围内的系统。


lf-nmr/mri低场核磁共振技术具有一些特殊的应用和优势:

1.低成本:相对于高场核磁共振系统,低场核磁共振系统的建设和运行成本较低,使得该技术在一些预算有限的研究或应用领域更具可行性。

2.便携性:低场核磁共振系统可以设计为便携式设备,易于移动和部署。这使得它在野外、临床诊断或偏远地区等场景下的应用具有优势。

3.特定应用:lf-nmr/mri低场核磁共振技术在某些特定应用中具有优势,例如食品质量检测、油水分离、岩心分析等。由于不同核磁共振参数(如T1、T2等)在不同场强下的变化特点,低场核磁共振可以提供特殊的信息。

低场核磁共振成像:lf-nmr/mri低场核磁共振成像通常用于医学和生物学领域,如关节成像、脑部成像等。虽然低场成像分辨率较低,但它具有较短的扫描时间和较低的磁场要求,对某些临床情况或特定应用具有一定的优势。


需要注意的是,低场核磁共振系统的性能和成像质量相对较差,分辨率较低,对于某些细节的观察可能不够清晰。因此,在选择核磁共振系统时,需要综合考虑具体应用需求、成本和设备性能等因素。


lf-nmr/mri低场核磁共振主要可分为磁体、射频、谱仪和温控四个部分;


2023-07-10 13:03:06 120 0
核磁共振实验(弛豫时间测试)

核磁共振实验(弛豫时间测试)

核磁共振实验:核磁共振弛豫时间测试是一种分析材料动力学特征的技术。它是利用核磁共振谱仪对样品核自旋翻转后自由感应衰减信号的测量,根据核自旋翻转的速度和复原速度,得到两种弛豫时间:自旋-自旋弛豫时间(T1)和自旋-晶格弛豫时间(T2)。

T1是核自旋能量从高能级返回低能级所需要的时间,是描述材料中原子核间相互作用的一种指标,通常代表材料中原子核所处环境的内部旋转速率。

T2是指核自旋相位随时间的演化,是受磁场中离子之间相互作用和局部磁场扰动影响的指标,通常反映材料中离子受到的外部干扰。

因此,通过测量T1和T2可以反映出样品分子的运动相关信息,研究样品分子的结构、构象、动力学行为以及相互作用。该实验技术在化学、生物化学、物理、材料科学等领域都有广泛的应用。

核磁共振实验可以通过以下步骤进行:

准备样品:样品应为液体、固体,要求样品中含有有核磁共振谱图中需要观测的核。需将样品置于检测探头中,检测探头置于强磁场中。

施加RF脉冲:施加一个称为RF(射频)脉冲矢量的电磁波,以翻转样品中的核自旋。RF脉冲根据需要的实验参数进行控制,包括幅度、持续时间、频率等。

探测核磁共振信号:一旦核自旋被翻转,并返回到较低的能级后,探针或管子将从样品中探测到一个称为自由感应衰减(FID)的信号。这个信号是由激励核自旋产生的,FID信号的幅度和形状对样品中的核进行定量和定性分析。


核磁共振实验需要注意的事项:核磁共振实验需要使用高精密度的实验设备,并需要经过专业的培训和认证才能进行。

2023-03-27 23:50:28 134 0
怎样理解核磁共振弛豫时间

怎样理解核磁共振弛豫时间

什么是弛豫时间?

弛豫时间,即达到热动平衡所需的时间。是动力学系统的一种特征时间。系统的某种变量由暂态趋于某种定态所需要的时间。在统计力学和热力学中,弛豫时间表示系统由不稳定定态趋于某稳定定态所需要的时间。

什么是核磁共振弛豫时间?

要了解核磁共振弛豫时间,首先了解一些核磁共振基本原理:核磁共振从字面意思可以理解为原子核在磁场中发生共振。一般核磁共振中的原子核是指氢原子核。磁是指磁场环境,在均衡稳定的磁场里面,氢原子核会有会以固定的频率发生进动,进动频率与磁场强度成正比。共振是指外加频率与氢原子核在磁场中的固有频率相等时,氢原子核吸收能量发生核磁共振。

核磁共振发生的过程,其实是原子核吸收射频能量的过程,当射频脉冲关闭后,吸收能量的原子核会释放吸收的能量,经过一定的弛豫过程,随着时间的推移,zui终恢复到平衡状态。原子核释放能量所需要的时间就对应核磁共振弛豫时间。

核磁共振弛豫时间有两种即T1和T2

T1为纵向驰豫时间,纵向磁化强度恢复的时间常数T1称为纵向弛豫时间(又称自旋-晶格弛豫时间)。

t2为横向弛豫时间,横向磁化强度消失的时间常数T2称为横向弛豫时间(又称自旋-自旋弛豫时间)。

影响核磁共振弛豫时间的因素:

核磁共振弛豫时间T1:

弛豫过程是能量释放的过程,T1弛豫中能量释放到哪里了呢?其名字告诉我们答案,spin-lattice,自旋晶格,晶格相当于指与H原子排列在一起组成的晶格,所以,能量释放到周围的晶格中。T1弛豫与周围分子的运动息息相关。T1可以研究慢速分子运动,例如金属离子的螯合状态、蛋白质聚集、多孔材料表面动力学等等。

核磁共振弛豫时间T2;

T2,自旋-自旋弛豫。归纳起来就是因为各个H质子的拉莫尔频率(或者说相位)不尽相同,当撤去射频脉冲后,质子由聚到散的过程。

影响核磁共振弛豫时间T2的因素:

1.内部因素

分子运动:分子运动越慢,T2越小;例如冰和固体;

分子尺寸:分子尺寸越大,T2越小;例如食品中淀粉等大分子的弛豫时间比水和油脂短得多。

分子结合状态:结合越紧密,T2越小;食品中水的多层结构理论

2. 外部因素

磁场不均匀:千万不要小看这个因素,磁场不均匀会加速散相过程(使得H质子之间的差异更大),从而测得的T2比实际的T2衰减的快的多的多。

核磁共振弛豫时间T1与T2的关系图:

2022-12-09 17:03:51 292 0
核磁共振弛豫时间和什么有关

核磁共振弛豫时间和什么有关

什么是弛豫时间?

弛豫时间,即达到热动平衡所需的时间。是动力学系统的一种特征时间。系统的某种变量由暂态趋于某种定态所需要的时间。在统计力学和热力学中,弛豫时间表示系统由不稳定定态趋于某稳定定态所需要的时间。

什么是核磁共振弛豫时间?

要了解核磁共振弛豫时间,首先了解一些核磁共振基本原理:核磁共振从字面意思可以理解为原子核在磁场中发生共振。一般核磁共振中的原子核是指氢原子核。磁是指磁场环境,在均衡稳定的磁场里面,氢原子核会有会以固定的频率发生进动,进动频率与磁场强度成正比。共振是指外加频率与氢原子核在磁场中的固有频率相等时,氢原子核吸收能量发生核磁共振。

核磁共振发生的过程,其实是原子核吸收射频能量的过程,当射频脉冲关闭后,吸收能量的原子核会释放吸收的能量,经过一定的弛豫过程,随着时间的推移,蕞终恢复到平衡状态。原子核释放能量所需要的时间就对应核磁共振弛豫时间。

核磁共振弛豫时间有两种即T1和T2

T1为纵向驰豫时间,纵向磁化强度恢复的时间常数T1称为纵向弛豫时间(又称自旋-晶格弛豫时间)。

t2为横向弛豫时间,横向磁化强度消失的时间常数T2称为横向弛豫时间(又称自旋-自旋弛豫时间)。

核磁共振弛豫时间和什么有关:

核磁共振弛豫时间T1:

弛豫过程是能量释放的过程,T1弛豫中能量释放到哪里了呢?其名字告诉我们答案,spin-lattice,自旋晶格,晶格相当于指与H原子排列在一起组成的晶格,所以,能量释放到周围的晶格中。T1弛豫与周围分子的运动息息相关。T1可以研究慢速分子运动,例如金属离子的螯合状态、蛋白质聚集、多孔材料表面动力学等等。

核磁共振弛豫时间T2;

T2,自旋-自旋弛豫。归纳起来就是因为各个H质子的拉莫尔频率(或者说相位)不尽相同,当撤去射频脉冲后,质子由聚到散的过程。

影响核磁共振弛豫时间T2的因素:

1.内部因素

分子运动:分子运动越慢,T2越小;例如冰和固体;

分子尺寸:分子尺寸越大,T2越小;例如食品中淀粉等大分子的弛豫时间比水和油脂短得多。

分子结合状态:结合越紧密,T2越小;食品中水的多层结构理论。

2. 外部因素

磁场不均匀:千万不要小看这个因素,磁场不均匀会加速散相过程(使得H质子之间的差异更大),从而测得的T2比实际的T2衰减的快的多的多。

影响核磁共振弛豫时间T1与T2的关系

2022-12-28 16:58:54 163 0
低场核磁共振研究草莓水分分布

低场核磁共振研究草莓水分分布

1、实验目的

通过低场核磁共振技术获得四个干燥草莓样品水分分布信息。


2、实验材料

客户提供4个干燥草莓样品,分别编号为空白、80℃-1.5h、80℃-3h 、80℃-4.5h 。


3、实验仪器

纽迈低场核磁共振成像分析仪,磁体强度0.5T,线圈直径为60mm,磁体温度为32.00℃


4、样品制备

将样品放入核磁仪器线圈中,进行测试。称量得到样品的质量如下表所示。



5、实验参数

采用CPMG序列进行T2弛豫分析,参数(略)。


6、实验方法

采用CPMG序列及sirt反演得到样品水分分布曲线。


7、分析及结果

T2弛豫分析

使用迭代寻优的方法将采集到的T2衰减曲线代入弛豫模型中拟合并反演得到样品的T2弛豫信息,包括弛豫时间及其对应的弛豫信号分量,横坐标为范围从10-2 ms到10000 ms对数分布的200个横向弛豫时间分量T2,纵坐标为各弛豫时间对应的信号分量A2i(为便于定量分析,该信号分量经质量的归一化处理),已知信号量与其组分含量成正比关系,积分面积A即为样品的信号量。


T2弛豫时间反映了样品内部氢质子所处的化学环境,与氢质子所受的束缚力及其自由度有关,而氢质子的束缚程度又与样品的内部结构有密不可分的关系。氢质子受束缚越大或自由度越小,T2弛豫时间越短,在T2谱上峰位置较靠左;反之则T2弛豫时间越长,在T2谱上峰位置较靠右。


三个峰分别代表不同弛豫时间的质子分布,峰面积代表该组分质子含量。



从上面可以看出:

1. 从峰个数来看,样品都有三个峰;而且根据峰的弛豫时间,应该归为结合水(T21a)、次结合水(T21b)和不易流动水(T22)。

2. 从峰比例来看,样品的结合水比例均较大,说明样品中水的自由程度都很低,表现出来的横线弛豫时间很小。

3. 样品之间峰的弛豫时间变化不大,峰比例的区别也较小,但是略有区别。样品80℃-1.5h的结合水比例略小于其他组样品。


8、结论

四个样品中水分都主要以结合水形式存在,水的自由程度都很低,表现出来的横线弛豫时间很小,且样品80℃-1.5h的结合水比例略小于其他组样品。


2022-01-21 23:26:57 174 0

2月突出贡献榜

推荐主页

最新话题

请您留言

感谢您的关注,当前客服人员不在线,请填写一下您的信息,我们会尽快和您联系。

提交