仪器社区

一文读懂ALD原子层沉积技术

那诺—马斯特中国有限公司 2022-10-24


概述:

原子层沉积(Atomic layer deposition)是一种可以将物质以单原子膜形式一层一层的镀在基底表面的方法。原子层沉积与普通的化学沉积有相似之处。但在原子层沉积过程中,新一层原子膜的化学反应是直接与之前一层相关联的,这种方式使每次反应只沉积一层原子

单原子层沉积(atomic layer depositionALD,又称原子层沉积或原子层外延atomic layer epitaxy ,是一种基于有序、表面自饱和反应的化学气相薄膜沉积技术。最初是由芬兰科学家提出并用于多晶荧光材料ZnS:Mn以及非晶Al2O3绝缘膜的研制,这些材料是用于平板显示器。由于这一工艺涉及复杂的表面化学过程和低的沉积速度,直至上世纪80年代中后期该技术并没有取得实质性的突破。

但是到了20世纪90年代中期,人们对这一技术的兴趣在不断加强,这主要是由于微电子和深亚微米芯片技术的发展要求器件和材料的尺寸不断降低,而器件中的高宽比不断增加,这样所使用材料的厚度降低至几个纳米数量级。

因此,原子层沉积技术的优势就体现出来,如单原子层逐次沉积,沉积层极均匀的厚度和优异的一致性等就体现出来,而沉积速度慢的问题就不重要了。以下主要讨论原子层沉积原理和化学,原子层沉积与其他相关技术的比较,原子层沉积设备,原子层沉积的应用和原子层沉积技术的发展。

 

 

原子层沉积系统(ALD)的原理:

原子层沉积是通过将气相前驱体脉冲交替地通入反应器并在沉积基体上化学吸附并反应而形成沉积膜的一种方法(技术)。当前驱体达到沉积基体表面,它们会在其表面化学吸附并发生表面反应。在前驱体脉冲之间需要用惰性气体对原子层沉积反应器进行清洗。由此可知沉积反应前驱体物质能否在被沉积材料表面化学吸附是实现原子层沉积的关键。气相物质在基体材料的表面吸附特征可以看出,任何气相物质在材料表面都可以进行物理吸附,但是要实现在材料表面的化学吸附必须具有一定的活化能,因此能否实现原子层沉积,选择合适的反应前驱体物质是很重要的。


1.jpg

图1

 

基于原子层沉积的原理,利用原子层沉积制备高质量薄膜材料,三大要素必不可少:1)前驱体需满足良好的挥发性、足够的反应活性以及一定热稳定性,前驱体不能对薄膜或衬底具有腐蚀或溶解作用(图2 A);2)前驱体脉冲时间需保证单层饱和吸附(图2 A);3)沉积温度应保持在ALD窗口内,以避免因前驱体冷凝或热分解等引发CVD生长从而使得薄膜不均匀(图2 B)。

2.jpg

图2

 

原子层沉积的表面反应具有自限制性(self-limiting),实际上这种自限制性特征正是原子层沉积技术的基础。不断重复这种自限制反应就形成所需要的薄膜。

原子层沉积的自限制特征 :根据沉积前驱体和基体材料的不同,原子层沉积有两种不同的自限制机制,即化学吸附自限制(CS)和顺次反应自限制(RS)过程。

化学吸附自限制沉积过程中,第一种反应前驱体输入到基体材料表面并通过化学吸附(饱和吸附)保持在表面。当第二种前驱体通入反应器,起就会与已吸附于基体材料表面的第一前驱体发生反应。两个前驱体之间会发生置换反应并产生相应的副产物,直到表面的第一前驱体完全消耗,反应会自动停止并形成需要的原子层。因此这是一种自限制过程,而且不断重复这种反应形成薄膜。

 

3.jpg

图3

 

与化学吸附自限制过程不同,顺次反应自限制原子层沉积过程是通过活性前驱体物质与活性基体材料表面化学反应来驱动的。这样得到的沉积薄膜是由于前驱体与基体材料间的化学反应形成的。图a和b分别给出了这两种自限制反应过程的示意图。由图可知,化学吸附自限制过程的是由吸附前驱体1(ML2)与前驱体2(AN2)直接反应生成MA原子层(薄膜构成),主要反应可以以方程式⑴表示。对于顺次反应自限制过程首先是活化剂(AN)活化基体材料表面;然后注入的前驱体1(ML2)在活化的基体材料表面反应形成吸附中间体(AML),这可以用反应方程式⑵表示。反应⑵随着活化剂AN的反应消耗而自动终止,具有自限制性。当沉积反应前驱体2(AN2)注入反应器后,就会与上述的吸附中间体反应并生成沉积原子层。

图 A.化学吸附(CS)和B.顺次反应(RS)自限制原子层沉积过程示意图

ML2 + AN2 --- MA(film) + 2LN ⑴

AN + ML2 --- AML + NL ⑵

AML + AN2 --- MAN + NL ⑶

这里需要说明的是前躯体1能够在基体材料表面快速形成稳定的化学吸附层是化学吸附自限制原子沉积过程的必要条件。对于顺次反应自限制过程,一方面基体材料表面必须先经过表面活化,另一方面,这种沉积反应实际是半反应⑵和⑶的组合。每个半反应完成后材料表面的功能基团都会发生变化,并且一个原子层沉积完成时,材料表面要恢复到最初的活化基团状态。这种恢复特点以及材料表面原始活性状态是区分上述两种不同的自限制反应沉积过程的主要因素。

 

 

技术应用:

原子层沉积技术由于其沉积参数的高度可控型(厚度,成份和结构),优异的沉积均匀性和一致性使得其在微纳电子和纳米材料等领域具有广泛的应用潜力。就已发表的相关论文和报告可预知,该技术可能应用的主要领域包括:

1) 晶体管栅极介电层(high-k)和金属栅电极(metal gate)

2) 微电子机械系统(MEMS)

3) 光电子材料和器件

4) 集成电路互连线扩散阻挡层

5) 平板显示器(有机光发射二极管材料,OLED)

6) 互连线势垒层

7) 互连线铜电镀沉积籽晶层(Seed layer)

8) DRAM、MRAM介电层

9) 嵌入式电容

10) 电磁记录磁头

11) 各类薄膜(<100nm)

 

原子层沉积技术沉积出的相关薄膜材料

材料类别   沉积材料

Ⅱ-Ⅵ化合物 ZnS,ZnSe,ZnTe,ZnS1-xSex,CaS,SrS,BaS,SrS1-xSex,CdS,CdTe,MnTe,HgTe,Hg1-xCdxTe,Cd1-xMnxTeⅡ-Ⅵ基TFEL磷光材料 ZnS:M (M=Mn,Tb,Tm),CaS:M (M=Eu,Ce,Tb,Pb),SrS:M (M=Ce,Tb,Pb,Mn,Cu)

Ⅲ-V化合物 GaAs,AlAs,AlP,InP,GaP,InAs,AlxGa1-xAs,GaxIn1-xAs,GaxIn1-xP

氮(碳)化物 半导体/介电材料 AlN,GaN,InN,SiNx

导体 TiN(C),TaN(C),Ta3N5,NbN(C),MoN(C)

氧化物 介电层 Al2O3,TiO2,ZrO2,HfO2,Ta2O5,Nb2O5,Y2O3,MgO,CeO2,SiO2,La2O3,SrTiO3,BaTiO3

透明导体/半导体 In2O3,In2O3:Sn,In2O3:F,In2O3:Zr,SnO2,SnO2:Sb,ZnO,ZnO:Al,Ga2O3,NiO,CoOx

超导材料 YB2Cu3O7-x

其他三元材料 LaCoO3,LaNiO3

氟化物 CaF,SrF,ZnF

单质材料 Si,Ge,Cu,Mo,Pt,W,Co,Fe,Ni,Ru

其他 La2S3,PbS,In2S3,CuGaS2,SiC

 

 

应用案例:晶体管材料制备方面的应用

原子层沉积技术凭借其独特的表面化学生长原理、亚纳米膜厚的精确控制性以及适合复杂三维高深宽比表面沉积等特点,特别适合这类薄膜材料的制备。例如:S.F. Bent等人利用十八烷基磷酸盐(ODPA)对Cu的选择性吸附(图4),在预先吸附有ODPA分子的衬底表面进行ALD沉积Al2O3,有效避免了Al2O3在Cu表面沉积,从而得到被高k绝缘材料Al2O3所间隔的空间选择性暴露表面Cu的优质薄膜材料。此外,电镜照片(图5)表明该沉积方法的区域选择性得到了有效保证。


4.jpg

图4. ALD区域选择性沉积Al2O3原理

 

5.jpg

图5.(a)(d)(g)图案化的Cu/SiO2衬底SEM照片;(b)(e)(h)ODPA处理1 h经Al2O3ALD沉积后的Cu/SiO2衬底Al俄歇图像;(c)(f)(i)沉积完经醋酸溶液中超声10 min处理后的Cu/SiO2衬底Al俄歇图像。

 

 

原子层沉积的优势:

从原理上说,ALD是通过化学反应得到生成物,但在沉积反应原理、沉积反应条件的要求和沉积层的质量上都与传统的CVD不同,在传统CVD工艺过程中,化学蒸汽不断通入真空室内,因此该沉积过程是连续的,沉积薄膜的厚度和温度、压力、气体流量以及流动的均匀性、时间等多种因素有关;在ALD工艺过程中,则是将不同的反应前驱物以气体脉冲的形式交替送入反应室中,因此并非一个连续的工艺过程。相对于传统的沉积工艺而言,ALD在膜层的均匀性、阶梯覆盖率以及厚度控制等方面都具有明显的优势。

在某些应用中,需要在具有很大长径比的内腔表面镀膜,极限的情况下长径比会达到15甚至20,采用传统的镀膜方法是无法实现的,而原子层沉积技术由于是通过在基底表面形成吸附层,进一步通过反应生成薄膜,因而在这方面具有独特的优势,可以在大长径比的内腔表面形成厚度均匀的薄膜。

 

6.jpg

图6.原子层沉积技术与其他制膜技术对比

 

7.jpg

图7

 

原子层沉积技术的发展:等离子体增强原子层沉积(Plasma-Enhanced AtomicLayer Deposition,PEALD

原子层沉积技术经过四十多年的发展,无论是在沉积材料的种类还是具体沉积方法的扩展与改进上,都已经取得了长足进步,在众多领域更是展现出令人期待的商业前景。但传统的热原子层沉积技术在发展过程中仍面临着一些挑战。比如:原子层沉积前驱体往往都是金属有机化合物,合适的前驱体种类较少而且价格昂贵;传统热原子层沉积技术因需要长时间的惰气吹扫以保证随后的表面自限制薄膜生长,沉积速率较慢,不适合大规模工业生产;此外,热原子层沉积技术难以用来沉积金属Ti,Ta等特殊材料。

随着原子层沉积技术与其他先进技术不断融合以及人们对原子层沉积设备的不断改进,诸如“等离子体增强原子层沉积技术”、“空间式原子层沉积技术”、“流化床原子层沉积技术”等新型原子层沉积技术逐渐出现并在一定程度上有效解决了传统热原子层沉积技术所面临的诸多难题。下面主要介绍等离子体增强原子层沉积技术(PEALD)

1991年,荷兰科学家deKeijser和van Opdorp首次使用氢气等离子体与三甲基镓和砷化氢反应外延生长砷化镓,进而提出了等离子体增强原子层沉积技术。

在过去二十多年,等离子体增强原子层沉积技术发展迅速。通过巧妙设计等离子体引入方式,人们已经设计出如图8所示各种等离子体增强原子层沉积设备。

 

8.jpg

图8.(A)直接等离子体增强原子层沉积;(B)远程等离子体增强原子层沉积;(C)自由基增强原子层沉积。

 

9.jpg

图9.(A)等离子体增强原子层沉积与热原子层沉积原理图对比;(B)不同衬底和沉积材料对应的沉积温度范围;(C)利用不同原子层沉积技术在Si (111) 表面生长AlN时,初始阶段膜厚随ALD循环次数变化(插图为沟道结构Si衬底表面采用N2-H2 PEALD技术沉积AlN SEM截面图)。

 

如图9A,与热ALD相似,PEALD的每一循环也由前驱体A脉冲吸附、惰气吹扫、前驱体B脉冲吸附、惰气吹扫四步组成,但与热ALD不同之处在于,PEALD采用了含有各种高活性粒子(如:含有O2、O、O2*、O*、O2+、O+、O-等活性物种的O2等离子体)的等离子体B*来代替前驱体B与吸附于衬底表面的前驱体A反应。高活性物种的引入不仅在很大程度上提高了原子层沉积的速率,而且还避免了热ALD中的延迟成核现象的发生(图9C),从而改善了薄膜质量。此外,采用PEALD还可以拓宽前驱体种类和ALD温度窗口(图9B),使得生物材料和聚合物材料等温度敏感型衬底表面的沉积以及需要高温活化的前驱体物质的沉积成为可能,从而使原子层沉积技术能应用于更多的领域。

 

以聚合物表面沉积贵金属Ru为例(图10),使用RuO4为前驱体与H2进行热ALD沉积金属Ru薄膜时,RuO4在100度以上即发生热分解,引发类CVD生长,不利于膜厚控制和三维共形生长。当沉积温度降至50度时,测量发现,薄膜生长缓慢。75度薄膜生长明显,但XPS测试显示所得金属Ru薄膜中含有大量O,这与低温下H2活性不足密切相关,从而极大降低了薄膜的导电性能。因此,传统热ALD用于沉积金属Ru只在100度附近存在一个较窄的沉积窗口。当使用等离子体H2代替普通H2后,在50至100度范围均能进行Ru薄膜的快速生长,XPS测试也显示薄膜含氧量较低。由此可以看出等离子体技术的引入可以在一定程度上解决目前热原子层沉积所面临的困难。

目前,等离子体增强原子层沉积不仅能够在更温和条件下沉积传统热原子层沉积能够沉积的一些金属以及氧化物等薄膜材料,还可以沉积通常采用CVD在高温条件下才能沉积的石墨烯等新兴材料。


10.jpg

图10. 采用ALD、PEALD生长金属Ru的特点


评论
全部评论
您可能感兴趣的社区主题
加载中...
发布 评论