仪器社区

TOF-SIMS、XPS和UPS/LEIPS在全固态电池界面研究中的应用

爱发科费恩斯(南京)仪器有限公司 2022-05-10

背景简介

        可充电锂离子电池 (LIB)具有工作电压高、能量密度大、循环寿命长、无记忆效应等优点,自问世以来已逐渐替代传统可充电电池(如铅酸电池、镍氢电池、镍镉电池),并成为现代社会中不可或缺的一部分:由于锂离子电池在能量密度上有着显著的优势,它被广泛用于笔记本电脑、智能手机、相机等大多数移动电子设备;大容量锂离子电池已在电动汽车中使用,将成为21世纪电动汽车的主要动力电源之一。

但是,在电动汽车 (EV) 或插电式混合动力汽车 (PHEV)中使用现有的锂电技术会带来一些安全隐患:由于目前市售的锂离子电池均含有机液态电解质,这些有机物分解电压较低、易燃易爆,在高温环境下稳定性较差。全固态电池 (ASSB) 包括电解质在内的所有组件都是固态的,在安全性和热稳定性上有着公认的优势,因此,全固态电池有望成为下一代高性能储能电池然而,固体电解质(SE)和电极界面处的内阻是ASSB实际应用的最大障碍之一,该界面处的内阻限制了锂离子在充电/放电循环期间的传输效率。尽管目前已经对ASSB的SE/电极界面进行了大量研究,但界面阻抗的形成机制仍不清楚,需要进一步研究SE和电极之间的相互作用。

             在本案例中,我们结合飞行时间二次离子质谱 (TOF-SIMS)、X射线光电子能谱 (XPS)、紫外光电子能谱 (UPS) 和低能反光电子能谱 (LEIPS) 来表征全固态电池中LiCoO2正极和LiPON电解质界面,获取了SE/电极界面处的化学成分、化学态信息,并对该界面处的价带最大值 (VBM) 和导带最小值 (CBM) 进行了测定。

V+T.png

图1 ULVAC-PHI最新一代TOF-SIMS、XPS产品


样品信息

         在这项研究中,所测试的样品是由金属锂负极、LiCoO2正极和LiPON电解质组成的ASSB薄膜电池。将 Pt/Ti 层涂覆在玻璃上作为正极集流体 (CCC),再使用射频 (RF) 叠加直流 (DC) 溅射将 LiCoO2 沉积在 CCC 表面。沉积后的LiCoO2在空气中500℃环境下退火10小时使其结晶。LiPON薄膜是在0.3 Pa的氮气环境下,通过使用功率为2 kW的Li3PO4 靶材进行射频溅射制备。靶材与基板之间的距离为120 mm,LiPON沉积过程中的最高温度由贴在基板上的温度标签(TEM-PLATE,Palmer Wahl Instruments, Inc.)记录。尽管基板下方装有冷却系统,但在2小时沉积过程中最高温度仍可达到 200℃。最后,通过涂覆金属锂负极、负极集流体和保护层完成电池装置。电池横截面结构如图2所示,LiPON和LiCoO2层的厚度分别为2.2 µm和5.7 µm。电化学阻抗谱测量结果表明,该器件在LiPON/LiCoO2界面处存在内阻。

图2.png

图2 FIB切割处理后的ASSB纵切面SEM影像,从上自下分别为LiPON电解质、LiCoO2正极、Pt/Ti正极集流体和玻璃基板


测试条件

          使用PHI Nano TOF 2和PHI VersaProbe 3分别对LiPON/LiCoO2界面进行TOF-SIMS分析以及XPS、UPS/LEIPS测试。详细的测试条件见表1

4.结果与讨论

4.1 TOF-SIMS分析

         图3展示了不同厚度的LiPON/LiCoO2界面处TOF-SIMS深度剖析结果。当LiPON厚度为2.2 μm时,在LiCoO2层中,观察到Co+强度呈阶梯式分布,该层能够分为两个区域:在Co+ 强度较低的区域,Li3O+相对较高,值得注意的是,此时Li3O⁺位于界面附近的LiCoO2层中。TOF-SIMS结果表明,在LiPON/LiCoO2界面附近存在具有特定化学状态的中间层。不过有趣的是,当LiPON厚度为100nm时,LiPON/LiCoO2 界面却没有观察到明显的中间层。

         尽管在2.2 µm厚的 LiPON/LiCoO2界面上观察到了非常独特的化学状态,但在100 nm厚的LiPON/LiCoO2样品中却没有观察到类似的现象。接下来,我们用XPS研究了LiPON膜的厚度差异对界面化学性质的影响。

不同厚度LiPON/LiCoO2样品的TOF-SIMS深度剖析结果:(a)2.2 μm(b)100 nm

 

4.2 XPS分析

         为了探究制造过程中热量对LiPON固态电解质层的影响,这里我们使用加热样品托在XPS分析腔体中对100 nm厚的LiPON/LiCoO2样品进行加热,温度控制在200ºC下保持2小时,之后冷却至室温进行XPS分析,该加热条件模拟了薄膜固态电池制造过程中基板的温度变化。图4(a)展示了加热前LiPON/LiCoO2样品表面的XPS精细谱结果,在加热前,在Co 2p3/2谱图中可以观察到来自Co3⁺的卫星峰,表明在沉积100 nm厚的LiPON薄膜后,样品表面仍存在少量的LiCoO2,这主要是因为LiCoO2的表面粗糙度约为100 nm,因此在表面检测到1.8% Co(详见表2);在对样品加热后,如图4(b)所示,Co 2p3/2谱图中未能观察到Co3⁺卫星峰并出现了金属Co的信号,但在对LiCoO2表面进行相同的热处理时,Co的化学状态却保持为 Co3+。上述结果表明,在加热过程中LiPON和LiCoO2之间会发生一些相互作用。

层厚为100 nmLiPON/LiCoO2样品XPS窄谱结果:(a)加热前;(b)加热后;(c)LiCoO2标样图谱

         表2展示了该样品加热前后表面XPS精细谱数据的定量分析结果:N/P的浓度比为0.49,加热前后几乎没有变化,而O/P比从3.5增加到3.8;这表明在加热过程中有氧原子结合到LiPON中。据此,我们可以得知Co的还原发生在界面附近的LiCoO2层内。综上所述,受薄膜固态电池制造环境中温度的影响,SE/正极界面处化学成分和化学态会发生变化,这些界面处的化学成分和化学态的变化可能会导致界面电阻的增加。

4.3 UPS/LEIPS分析

        为了测量LiPON和LiCoO2的能带结构,在本实验中制备了单层的LiPON和LiCoO2,并使用UPS和LEIPS测定其VBM和CBM。LiCoO2和LiPON表面的UPS/LEIPS测试结果如图5所示,通过UPS/LEIPS分析可以很全面地表征两种材料的电子能级结构。

5 UPS/LIEPS分析结果:(a) LiCoO2(b) LiPON

         图6显示了两种材料的能带结构相对于真空能级的示意图。从结果上可以看出,由于LiCoO2的费米能级低于LiPON的费米能级,因此,在LiPON沉积到LiCoO2上的初始阶段,LiPON中的电子扩散到了LiCoO2中,这些电子可能诱导了Co的还原。此外,温度升高可能会促进LiPON 和LiCoO2之间的相互作用。如果可以在LiPON沉积过程中抑制温度的升高,则可以防止Co 还原。

图6 LiCoO2和LiPON电子能级示意图


5.小结

        利用 TOF-SIMS、XPS 和 UPS/LEIPS多种表面分析技术对薄膜固态电池中SE和正极的界面进行了详细表征,研究了SE/正极界面处的内阻形成机制,获得了以下信息:

(1) TOF-SIMS分析:深度剖析结果表明,由于固态电解质LiPON蒸镀沉积过程中会累积热量,从而使得温度升高,高温下SE/正极界面处的化学成分发生了变化:在沉积了2.2 μm的LiPON后,下方的正极材料LiCoO2出现了分层现象。

(2) XPS分析:XPS精细谱和定量分析结果表明,在LiPON的制造过程中,可以从下方的LiCoO2中引入氧原子,使得Co从Co3+还原为Co0+。该副反应会进一步导致LiCoO2的分解。

(3) UPS/LEIPS分析:能级排列分析结果表明,从LiPON到LiCoO2的电子扩散可能触发了Co的还原。此外,制造过程中温度的升高促进了LiPON和LiCoO2之间的相互作用。因此,对于这类薄膜固态电池而言,抑制Co还原将是最小化内阻的关键因素。

        全面的表面分析是材料评估的关键,TOF-SIMS、XPS、UPS/LEIPS可以提供有关ASSB的详细信息,可进一步了解 SE/电极之间的相互作用,这对于全固态电池生产方法的评估与改进具有重要意义。

 

此研究工作由ULVAC-PHI实验室的应用科学家Shin-ichi Iida团队完成。

文章来源:

https://doi.org/10.1116/6.0001044



评论
全部评论
您可能感兴趣的社区主题
加载中...
发布 评论