仪器社区

表面分析技术漫谈:Lab-based HAXPES③

爱发科费恩斯(南京)仪器有限公司 2021-08-20

上两节分享了硬X射线光电子能谱(HAXPES)的相关知识和优势,可以看到HAXPES采用更高能量X射线,不仅在界面结构的探测上展示了独特的优势,还将探测信息延伸至更深的芯能级,这些优势将为科学研究和产业应用提供强有力的支撑。错过上面两节内容的小伙伴,可以通过本节内容下方的链接进行回顾。X射线作为探测物质结构的探针,而同步辐射在X射线波段具有高亮度和能量连续可调的优势,促进了HAXPES相关技术的发展,所以本节内容将和大家分享基于同步辐射的HAXPES (synchrotron-based HAXPES) 的相关知识。


Part 3基于同步辐射的HAXPES(synchrotron-based HAXPES)


1. 同步辐射原理:

首先同步辐射光本质上是一种电磁辐射,也可以说是一种“光”。如图1动画所示,同步辐射装置一般由电子枪(Electron Gun)、电子直线加速器(Linear Accelerator)、增能环(Booster Ring)、储存环 (Storage Ring)、光束线 (Beamline) 和实验站 (Experimental Station) 等构成。电子枪产生的电子束团经由直线加速器加速注入到增能环,再经由增能环加速至趋近光速然后注入储存环。接近光速运动的电子在弯转磁铁的作用下,在环形的储存环中做回旋运动。根据电动力学定理,当电子运动方向发生改变时,在运动切线方向会产生电磁辐射。由于这种辐射最初是在电子同步加速器上观测到的,因而被命名为“同步辐射”。产生的同步辐射光经由光束线进行聚焦和单色化后引入到实验站。

图片

图1. 同步辐射光产生原理示意图


2. 同步辐射优势:

与常规光源相比,同步辐射装置产生的同步辐射光具有独特的优点:

高亮度:同步辐射光源具有很高的辐射功率和功率密度。如图2所示,第三代同步辐射光源的X射线亮度是X光机的上亿倍,因此可以用来做许多常规光源所无法进行的工作。例如用X光机拍摄一幅晶体缺陷照片,通常需要7-15天的感光时间,而利用同步辐射光源只需要十几秒或几分钟,工作效率提高了几万倍。

宽波段:如图3所示,同步辐射光的波长覆盖面大,具有从红外线、可见光、紫外线、软X射线一直延伸到硬X射线波段范围内的连续光谱,并且能通过单色化获得特定波长的光。

高准直:同步辐射光的发射度极小,利用光学元件引出的同步辐射光具有高度的准直性,经过聚焦,可大大提高光的亮度,从而进行极小样品和材料中微量元素的研究。

脉冲性:同步辐射光是由与储存环中周期运动的电子束团辐射发出的,具有纳秒至微秒的时间脉冲结构。利用这种特性,可研究与时间有关的化学反应、物理激发过程和生物细胞的变化等。

偏振性:储存环发出的同步辐射光具有线偏振性或圆偏振性,可用来研究样品中特定参数的取向问题。

2.png

图2. 同步辐射光源亮度与常规光源比较

3.jpg

图3. 各种光源的能量和波长分布范围


光是人们进行观察及研究自然的重要工具,其中X射线作为探测物质结构的探针为科学研究提供了丰富的探测和分析手段。同步辐射提供的优质光源,可以在能量、空间和时间等维度上获得更好的分辨能力和更高的实验效率。同步辐射装置作为高品质 “巨型X光机”,通过探究同步辐射光和物质相互作用(包括了散射、衍射、折射、反射、吸收和荧光过程等)(图4),推动了实验方法不断发展,成为了探测微观世界的“超级显微镜”。

4.png

图4. 同步辐射光与物质的相互作用


3. 同步辐射的发展

自1947年在电子同步加速器上首次观测到同步辐射以来,同步辐射光源经历了四代发展阶段:

DY代同步辐射光源“寄生”在用于高能物理实验的对撞机,是高能物理实验为主的兼用光源。

第二代同步辐射光源是为同步辐射应用专门建造的,使用了少量的插入件,加速器的设计也是以优化同步辐射光性能为基础。

第三代同步辐射光源对电子束发射度进行优化设计,同时使用大量插入件,得到亮度更高的同步辐射光。 

第四代是以衍射极限环为代表的同步辐射光源,具有极低的水平发射度和极高的空间相干性,亮度相对三代光源提升了2—3个量级。

同步辐射光源已经成为前沿科学研究中最为有力的综合研究平台,世界各国都在加大对同步辐射装置的建设投入。如图5所示,目前世界上有超过50台同步辐射光源处于运行状态,使得同步辐射成为世界上数目最多的大科学装置。例如国际上的欧洲同步辐射装置(ESRF)、美国先进光子源(APS)和日本超级光子环(SPring-8)等第三代同步辐射光源,瑞典MAXIV 光源第四代同步辐射光源,为科学研究和工业应用提供了强大的支持能力。目前国内的同步辐射装置包括北京同步辐射装置(BSRF,DY代同步辐射光源)、合肥同步辐射光源(NSRL,第二代同步辐射光源)、上海光源(SSRF,第三代同步辐射光源)以及正在建设的北京高能同步辐射光源(HEPS,第四代同步辐射光源)。

5.png
图5. 世界同步辐射装置分布图[1]


4. 基于同步辐射的HAXPES

尽管硬X射线光电子能谱(HAXPES)理论上具有很多优势,但是HAXPES要得到充分应用的前提是谱图信号的强度和能量分辨率必须要满足组分和化学态分析要求。在HAXPES发展初期的实验室硬X射线光源存在亮度低和线宽大的问题,限制了该技术的适用性和发展。同步辐射光具有亮度高和能量连续可调的优势,特别是第三代同步辐射光源可以为HAXPES提供优质硬X射线源。如图6所示,基于同步辐射的HAXPES线站的数量逐年增加,能为用户提供的机时也在逐年增加,但是面对广大的需求而言还是杯水车薪。图7总结了截至2020年11月全.球在运行的24 条HAXPES 光束线的详细参数。可以看到,绝大多数硬X射线都是由插入件(ID)引出,因此可以获得较大的光通量。大光通量有助于提高了XPS信号强度,这是同步辐射硬X射线的一个优势,但应该引起注意的是,在研究容易受到辐射诱导损伤的材料时,较低的通量密度可能是优势。另外,表中的所有光束线都是使用双晶单色器 (DCM),这样可以实现高能量分辨率。由于同步辐射光具有能量连续可调的优势,不同光束线的X射线能量范围有较大不同,大部分光束线的ZD能量是从4 keV开始,也有部分光束线的ZD能量覆盖到了软X射线波段。由于同步辐射光具有高准直性,这些同步辐射HAXPES的束斑尺寸以小束斑为主,这为小尺寸样品的测试提供了便利。同时相应实验站提供了多种样品处理设施,例如溅射、退火和样品沉积功能,部分实验站还具备原位(operando)实验条件,可以实现固气界面或固液界面原位动态测量。

6.png

图6. 在运行的同步辐射HAXPES 线站的增长情况[2]


7.png

图7. 基于同步辐射的HAXPES 实验站汇总[2]


同步辐射装置还在不断新建或者升级中,未来将有更多的HAXPES线站建成。上海光源(SSRF) 目前正在调试BL20U能源材料线(Energy material beamline, E-line),光子能量范围为130 eV-18 keV,结合了软、硬 X 射线技术。如图8所示,E-line采用两线三站布局,其中软、硬X射线合支线光子能量设计范围为130 eV 至 10 keV,逃逸电子动能范围为100 eV 至 10 keV,探测深度从亚纳米到百纳米,将是国内同步辐射光源中的DY条HAXPES 光束线,具备开展真空HAXPES和近常压XPS的能力。正在建设的北京高能同步辐射光源 (HEPS)属于第四代光源,具有更高的亮度和相干性,将为 HAXPES 带来了新的发展机遇。

8.png

图8. 上海光源(SSRF) E-line光束线总体布局图[3]


图片

小结:

同步辐射装置作为高品质“巨型X光机”,被誉为探测微观世界的“超级显微镜”。在同步辐射技术的加持下,硬X射线光电子能谱(HAXPES)的发展逐步加速,在界面结构的探测上展示了独特的优势,必将迎来科学研究和产业应用中的巨大的需求。但是遗憾的是,目前世界上仅有的20多条HAXPES专用同步辐射线站所提供的机时远远不能满足用户的需求,所以发展实验室硬X射线光电子能谱(Lab-based HAXPES)势在必行。




撰写:鞠焕鑫博士




HAXPES (Cr Kα & Al Kα)

-Beyond the Top Surface Analysis

8.png

图片

请锁定我们的公众号更新,下一节,将分享Lab-based HAXPES相关设备技术信息。


*参考资料:

[1] M.E. Couprie, Journal of Electron Spectroscopy and Related Phenomena, 196, 3-13 (2014)  

[2] Curran Kalha et al., J. Phys.: Condens. Matter. 33, 233001(2021) 

[3] Chen, ZH et al., Nuclear Science and Techniques. 29, 26 (2018).




评论
全部评论
您可能感兴趣的社区主题
加载中...
发布 评论