悬滴法测量动态表面张力的优势
-
LAUDA Scientific光学接触角测量仪采用悬滴法测量液体动态表面(界面)张力的优势如下:
悬滴法测量动态表面张力的一大特点是悬滴法适用于非常宽广的动态测量时间范围:从表/界面形成后的约0.1秒(甚至可低到几十微秒)起,对表/界面进行时间依赖性的动态测量,测量可持续至几分钟,几小时,几天,...。虽然在测量短界面寿命极限方面,ZD气泡压力法可以测量到更短的界面寿命(约几毫秒);但在长时间端,ZD气泡压力法只能测量到约几十到100秒。其它的传统方法要么根本不适合于动态测量(如吊环法),要么能够测量的起始时间迟至几秒到十几秒左右(如液滴体积法,薄板法)。另外传统的吊环法和薄板法由于表面活性剂分子容易吸附在其探针表面从而改变其表面的润湿特性,可能对测量结果造成较大的干扰。
悬滴法测量动态表面张力的另一大特点在于此方法可以通过对一个液滴从其 “诞生” 时刻起进行持续地测量,一直到预期的或希望的测量时间点为止(surface life/age scanning)。这不但保证了所有的测量数据来自于同一液滴界面,而且测量的时间间隔也可以几乎随意地短或长(最短时间间隔只受相机的速度决定,比如1-10ms),大大地提高了获得的动态曲线 γ(t)的连续性(时间分辨率)和可靠性,而且也使得测量所需时间大幅度地减小。比如测量一条从界面形成开始(0时间),持续到100s(界面寿命)的动态曲线,如果采用传统的滴体积法或ZD气泡压力法,就需要预先选择/指定几个测量时间点(比如20个不同的时间点),然后对于每个时间点,通过调节相应的测量参数(如加液或气流量速率)逐点进行测量,直到所有的时间点测量完毕。这样的一个测量过程往往需要一个甚至几个小时,得到的曲线也只能从20个不同的时间点插值而成,而且不同点的表面张力值均来自不同的液滴或气泡界面(不但表面张力值会发生漂移,而且时间计时上也会有偏差/bias)。同样的测量如果采用悬滴法来进行,整个测量过程只需要100s,在这段时间内采集的对应于不同时间点的测量点数可以高达成千上万,而且所有的表面张力值均来自同一个液滴,完全避免了表面张力值和时间计时上的偏差/bias问题。
全部评论(0条)
热门问答
- 悬滴法测量动态表面张力的优势
LAUDA Scientific光学接触角测量仪采用悬滴法测量液体动态表面(界面)张力的优势如下:
悬滴法测量动态表面张力的一大特点是悬滴法适用于非常宽广的动态测量时间范围:从表/界面形成后的约0.1秒(甚至可低到几十微秒)起,对表/界面进行时间依赖性的动态测量,测量可持续至几分钟,几小时,几天,...。虽然在测量短界面寿命极限方面,ZD气泡压力法可以测量到更短的界面寿命(约几毫秒);但在长时间端,ZD气泡压力法只能测量到约几十到100秒。其它的传统方法要么根本不适合于动态测量(如吊环法),要么能够测量的起始时间迟至几秒到十几秒左右(如液滴体积法,薄板法)。另外传统的吊环法和薄板法由于表面活性剂分子容易吸附在其探针表面从而改变其表面的润湿特性,可能对测量结果造成较大的干扰。
悬滴法测量动态表面张力的另一大特点在于此方法可以通过对一个液滴从其 “诞生” 时刻起进行持续地测量,一直到预期的或希望的测量时间点为止(surface life/age scanning)。这不但保证了所有的测量数据来自于同一液滴界面,而且测量的时间间隔也可以几乎随意地短或长(最短时间间隔只受相机的速度决定,比如1-10ms),大大地提高了获得的动态曲线 γ(t)的连续性(时间分辨率)和可靠性,而且也使得测量所需时间大幅度地减小。比如测量一条从界面形成开始(0时间),持续到100s(界面寿命)的动态曲线,如果采用传统的滴体积法或ZD气泡压力法,就需要预先选择/指定几个测量时间点(比如20个不同的时间点),然后对于每个时间点,通过调节相应的测量参数(如加液或气流量速率)逐点进行测量,直到所有的时间点测量完毕。这样的一个测量过程往往需要一个甚至几个小时,得到的曲线也只能从20个不同的时间点插值而成,而且不同点的表面张力值均来自不同的液滴或气泡界面(不但表面张力值会发生漂移,而且时间计时上也会有偏差/bias)。同样的测量如果采用悬滴法来进行,整个测量过程只需要100s,在这段时间内采集的对应于不同时间点的测量点数可以高达成千上万,而且所有的表面张力值均来自同一个液滴,完全避免了表面张力值和时间计时上的偏差/bias问题。
- 悬滴法动态表面张力的时间范围
在几乎所有的表面/界面张力测量方法中,悬滴法是最适合用于测量动态表面/界面张力的方法之一,也是能够测量的时间范围最广的方法。其支持的最短表面/界面寿命约从0.03-0.1s开始,最长时间则不受限制。
在所有的已商业化方法中,目前只有ZD气泡压力法可以测量表面/界面形成时间点更早的值,约从0.01s开始,但其能够测量的最长时间只有100s左右。而且测量一条表面张力-时间曲线所需要的时间比悬滴法长的多,在测量精度上也比不上悬滴法。另外这一方法也不适合用于动态界面张力的测量。
- 接触角测量仪 | 采用光学悬滴法测量CMC有哪些优势?
临界胶束浓度(CMC)是用于测量和表征表面活性剂的重要参数,必须通过实验来确定。 传统上采用 DuNoüy 环法或 Wilhelmy 片法来确定表界面张力,然后基于表面界面张力来测量CMC。但无论是 DuNoüy环法或还是Wilhelmy 片法都不适合于测量含有表面活性剂的溶液。
LAUDA Scientific接触角测量仪发现了测量CMC的新方法,即采用光学悬滴分析法测量临界胶束浓度(CMC),LAUDA接触角测量仪能够配备CMC扩展模块,实现光学悬滴法CMC全自动测量。与传统的基于力学天平法测量 CMC 相比,LAUDA接触角测量仪提供了完美的全新测量方法和全自动测量设备,功能强大,操作简单,可应用于科学研究、产品开发和工业生产。
与传统测量方法相比,光学悬滴分析法在准确性、可靠性、方便性和对包含各种表面活 性剂的溶液的适用性,以及自动化程度方面,都具有明显的优势:
1) 较高的绝对和相对精度
2) 非常广泛的测量范围:从约 10-3 到几千 mN/m;
3) 完美的适用于测量表面和界面张力; 东方德菲知识分享
4) 全自动、无需监测即可完成测量;
5) 可暂停、中断,并继续测量;
6) 终点浓度在测量完成后仍可扩展;
7) 适用于各种表面活性剂;
8) 一次测量即可确定静态 CMC 以及动态 CMC。
- 座滴法和悬滴法测量接触角的区别
- 最适合测量临界胶束浓度的方法---悬滴法
在当前市场上提供的所有测量方法中,悬滴法最适合用于对含有表面活性剂组分的体系进行表面张力值的测量,所以也是最适合用来进行临界胶束浓度(CMC)测量的方法。
德国劳达公司( Lauda Scientific)研发的基于悬滴法的全自动CMC测量法,不但方法的适用性和测量精度要超过传统的基于测力的天平法,而且更在自动化程度上也要胜过这些传统的方法。另外,通过单次测量,不但可以得到传统的基于平衡值的CMC值,而且可以获得完整的动态CMC-时间依赖曲线。
- 什么是动态表面张力测量?
表面张力是液体表面任意两相邻部分之间垂直于它们的单位长度分界线相互作用的拉力。而动态表面张力是没有明确释义的非专有名词。各个行业对动态表面张力的理解和需求都有不同,有的是表面张力随时间的变化、有的是表面张力随气泡压力的变化、有的是表面张力随浓度的变化等等。比如石油行业大多采用以下第2种,偶尔采用以下第1种:
1、动态表面张力可以理解为随时间变化的表面张力,比如白金板法测表面张力或白金环法测表面张力的测量曲线的横轴都是时间。
2、动态表面张力可以理解为液体-空气或液体-液体在6000转/分钟~10000转/分钟高速旋转下的表界面张力,比如旋转滴法测超低界面张力。
3、动态表面张力可以理解为液体从平针头缓慢挤出、形成液滴至滴落的过程,其中将落未落状态也就是悬滴法测表面张力。
4、动态表面张力可以理解为在液体中从1个泡/秒到20个泡/秒、打出气泡的速度不断加速,液体表面张力的变化,也就是气泡压力法测表面张力,曲线横轴是每秒打出的气泡数量。
5、动态表面张力可以理解为不同的表面活性剂迁移到新的界面需要的时间不同,在表面活性剂的迁移过程中,表面张力是在不断变化。例如喷墨打印机的打印头喷墨到纸张上只需要十几毫秒(或更短时间),汽车漆喷涂到工件上或乳胶漆滚涂到墙面上可能需要几十到几千毫秒。
6、动态表面张力可以理解为自动测定一系列不同浓度表面活性剂溶液的表面张力,同时记录γ-c(浓度)曲线,通过拟合曲线,自动判别拐点并计算出此体系中表面活性剂的临界胶束浓度CMC。用表面张力与浓度的对数作图,在表面吸附达到饱和时,曲线出现转折点,该点的浓度即为CMC。表面活性剂水溶液的表面张力开始时随溶液浓度增加而急剧下降,到达一定浓度(即CMC)后则变化缓慢或不再变化。因此常用表面张力-浓度对数图确定CMC。表面活性剂分子在溶剂中缔合形成胶束的Z低浓度即为临界胶束浓度,曲线横轴是浓度。
(来源:上海中晨数字技术设备有限公司)
- 接触角测量仪测量动态表面张力 2
接触角测量仪采用悬滴法进行动态表面张力测量尤其适合研究表面活性剂体系:不但可以考察表面活性剂的扩散速度,而且可以通过 “surface life/age scanning 液滴寿命” 测量模式完整地测绘出所考察体系的 “表面张力γ - 表面活性剂浓度c - 界面时间/寿命t” 三维拓扑关系图,γ(c,t),从而进一步确定体系临界胶束浓度CMC随界面寿命的时间依赖关系,CCMC(t)。
悬滴法测量动态表面张力有二大特点:
特点一 悬滴法所适用的动态测量时间范围广:从表/界面形成后的约0.1秒(甚至可低到几十微秒)起,对表/界面进行时间依赖性的动态测量,测量可持续至几分钟,几小时,几天...。虽然在测量短界面寿命极限方面,ZD气泡压力法可以测量到更短的界面寿命(约几毫秒);但在长时间端,ZD气泡压力法只能测量到约几十到100秒。其它的传统方法要么根本不适合于动态测量(如吊环法),要么能够测量的起始时间迟至几秒到十几秒左右(如液滴体积法,薄板法)。另外传统的吊环法和薄板法由于表面活性剂分子容易吸附在其探针表面从而改变其表面的润湿特性,可能对测量结果造成较大的干扰。
特点二 在于此方法可以通过对一个液滴从其 “诞生” 时刻起进行持续地测量,一直到预期的或希望的测量时间点为止(surface life/age scanning)。这不但保证了所有的测量数据来自于同一液滴界面,而且测量的时间间隔也可以几乎随意地短或长(最短时间间隔只受相机的速度决定,比如1-10ms),大大地提高了获得的动态曲线 γ(t)的连续性(时间分辨率)和可靠性,而且也使得测量所需时间大幅度地减小。比如测量一条从界面形成开始(0时间),持续到100s(界面寿命)的动态曲线,如果采用传统的滴体积法或ZD气泡压力法,就需要预先选择/指定几个测量时间点(比如20个不同的时间点),然后对于每个时间点,通过调节相应的测量参数(如加液或气流量速率)逐点进行测量,直到所有的时间点测量完毕。这样的一个测量过程往往需要一个甚至几个小时,得到的曲线也只能从20个不同的时间点插值而成,而且不同点的表面张力值均来自不同的液滴或气泡界面(不但表面张力值会发生漂移,而且时间计时上也会有偏差/bias)。同样的测量如果采用悬滴法来进行,整个测量过程只需要100s,在这段时间内采集的对应于不同时间点的测量点数可以高达成千上万,而且所有的表面张力值均来自同一个液滴,完全避免了表面张力值和时间计时上的偏差/bias问题。
动态速度录像模式,结合高精度自动注射泵,高速度相机,和全自动录像分析计算功能以及全轮廓悬滴分析法,以上这些条件是接触角测量仪悬滴法测量动表面张力必不可少的条件。
- 动态表面张力的时间依赖性
表面张力值反映的是分子从一液体的体相转移到表面层后,其(相较于处在体相时)所拥有的额外能量。这一额外能量与表面层的当前状态紧密相关,后者包括分子的组成/分布/排列/取向等。当一新的表面从开始形成到到达一相对平衡的稳定状态需要一定的时间,对于单组分的液体,涉及的往往只是表面层分子的分布、排列和取向,而这个过程一般可以在瞬间内完成。但是对于多组分的液体(如溶液/含有表面活性剂的溶液),体相中的不同组分首先需要通过扩散到达表面层以下的过渡区域,然后再通过表面吸附过程进入表面层。在表面层,不同组分的分子还需要经历分布/排列/取向等过程,以ZZ到达相对稳定的平衡状态。取决于液体所含的组分的属性(分子量/化学结构/构型/溶液粘度等),这一整个过程可以在几毫秒内完成,也可以持续几秒、几分、几小时、甚至几天。所以表面层的状态是一时间函数,反映这一状态的表面张力一般都表现出随时间而变化的动态特性,这一时间依赖性也被称为动态表面张力(dynamic surface tension)。通过对一体系动态表面张力的测量,可以获得与分子扩散、分子在表面层的分布/排列/取向等动态过程有关的速度/时间参数。
- 滴定管尖嘴部分有悬滴什么意思
- 如何计算液滴表面张力
- LAUDA Scientific接触角测量仪之光学悬滴分析法
临界胶束浓度(CMC)是用于测量和表征表面活性剂的重要参数,必须通过实验来确定。所有测量CMC的方法中,基于表面界面张力测量CMC的方法是常见的一种。传统上,采用DuNoüy环法或Wilhelmy片法来确定表界面张力,但无论是DuNoüy环法或Wilhelmy片法都不适合于测量含有表面活性剂的溶液。Wilhelmy片法遇到的问题是表面活性剂分子会吸附在Wilhelmy板金属(通常是铂金)表面上,这会导致明显的测量误差,甚至可能会影响溶液中表面活性剂的浓度。DuNoüy环法原则上仅适用于单组分(即纯净)液体,当涉及表面活性剂时,通常难以彻底清洁环,此外,也不可能获得特定的动态或平衡状态相对应的表面张力值。
与传统测量方法形成鲜明对比,德国LAUDA Scientific光学接触角测量仪采用光学悬滴分析法测量临界胶束浓度(CMC),LSA系列光学接触角测量仪配备CMC扩展模块,可实现CMC全自动测量。与传统的基于力学天平法测量CMC相比,它提供了WM的全新测量方法和全自动测量设备,功能强大,操作简单,可应用于科学研究、产品开发和工业生产。
与传统测量方法相比,光学悬滴分析法在准确性、可靠性、方便性和对包含各种表面活性剂的溶液的适用性,以及自动化程度方面,都具有明显的优势:
1) 较高的JD和相对精度:0.1%(JD)或0.01%(相对);
2) 非常广泛的测量范围:从约10-3到几千mN/m;
3) WM的适用于测量表面和界面张力;
4) 全自动、无需监测即可完成测量;
5) 可暂停、中断,并继续测量;
6) 终点浓度在测量完成后仍可扩展;
7) 适用于各种表面活性剂;
8) 一次测量即可确定静态CMC以及动态CMC。
( 本文内容得到授权所有者的授权许可。)
- 比表面积动态法和静态法的区别
比表面积是指单位质量物料所具有的总面积
1概述
学科:固体矿产工业要求
释文:比表面积是指单位质量物料所具有的总面积。分外表面积、内表面积两类。国标单位㎡/g.理想的非孔性物料只具有外表面积,如硅酸盐水泥、一些粘土矿物粉粒等;有孔和多孔物料具有外表面积和内表面积,如石棉纤维、岩(矿)棉、硅藻土等。测定方法有容积吸附法、重量吸附法、流动吸附法、透气法、气体附着法等。比表面积是评价催化剂、吸附剂及其他多孔物质如石棉、矿棉、硅藻土及粘土类矿物工业利用的重要指标之一。石棉比表面积的大小,对它的热学性质、吸附能力、化学稳定性、开棉程度等均有明显的影响。
测量:固体有一定的几何外形,借通常的仪器和计算可求得其表面积。但粉末或多孔性物质表面积的测定较困难,它们不仅具有不规则的外表面,还有复杂的内表面。通常称1g固体所占有的总表面积为该物质的比表面积S(specificsurfacearea,㎡/g)。多孔物比表面积的测量,无论在科研还是工业生产中都具有十分重要的意义。一般比表面积大、活性大的多孔物,吸附能力强。测定比表面积方法有气体吸附法和溶液吸附法两类。
2测试方法
方法提要:比表面积测试方法主要分连续流动法(即动态法)和静态容量法。
动态法
动态法是将待测粉体样品装在U型的样品管内,使含有一定比例吸附质的混合气体流过样品,根据吸附前后气体浓度变化来确定被测样品对吸附质分子(N2)的吸附量;静态法根据确定吸附吸附量方法的不同分为重量法和容量法;重量法是根据吸附前后样品重量变化来确定被测样品对吸附质分子(N2)的吸附量,由于分辨率低、准确度差、对设备要求很高等缺陷已很少使用;容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体,根据吸附前后的压力或重量变化来确定被测样品对吸附质分子(N2)的吸附量;
动态法和静态法的目的都是确定吸附质气体的吸附量。吸附质气体的吸附量确定后,就可以由该吸附质分子的吸附量来计算待测粉体的比表面了。
由吸附量来计算比表面的理论很多,如朗格缪尔吸附理论、BET吸附理论、统计吸附层厚度法吸附理论等。其中BET理论在比表面计算方面在大多数情况下与实际值吻合较好,被比较广泛的应用于比表面测试,通过BET理论计算得到的比表面又叫BET比表面。统计吸附层厚度法主要用于计算外比表面;
动态法仪器中有种常用的原理有直接对比法和多点BET法;
直接对比法
直接对比法,国外此种方法的仪器叫做直读比表面仪。该方法测试的原理是用已知比表面的标准样品作为参照,来确定未知待测样品相对标准样品的吸附量,从而通过比例运算求得待测样品比表面积。以使用氮吸附BET比表面标准样品为例,该方法的依据是有2个:一、BET理论的假设之一在吸附一层之后的吸附过程中的能量变化相当于吸附质分子液化热,也就是和粉体本身无关;二、在相同氮气分压(5%-30%)、相同液氮温度条件下,吸附层厚度一致;这就是以直接对比法所得出的比表面值与BET多点法得到的值一致性较好的原因;
多点BET法
多点BET法为国标比表面测试方法,其原理是求出不同分压下待测样品对氮气的*吸附量,通过BET理论计算出单层吸附量,从而求出比表面积;其理论认可度相对直接对比法高,但实际使用中,由于测试过程相对复杂,耗时长,使得测试结果重复性、稳定性、测试效率相对直接对比法都不具有优势,这是也是直接对比法的重复性标称值比多点BET法高的原因;
动态法和静态容量法是常用的主要的比表面测试方法。两种方法比较而言,
1、动态法比较适合测试快速比表面积测试和中小吸附量的小比表面积样品(对于中大吸附量样品,静态法和动态法都可以定量的很准确),
2、静态容量法比较适合孔径及比表面测试。虽然静态法具有比表面测试和孔径测试的功能,但静态法由于样品真空处理耗时较长,吸附平衡过程较慢、易受外界环境影响等,使得测试效率相对动态法的快速直读法低,对小比表面积样品测试结果稳定性也较动态法低,所以静态法在比表面测试的效率、分辨率、稳定性方面,相对动态法并没有优势;在多点BET法比表面分析方面,静态法无需液氮杯升降来吸附脱附,所以相对动态法省时;静态法相对于动态法由于氮气分压可以很容易的控制到接近1,所以比较适合做孔径分析。而动态法由于是通过浓度变化来测试吸附量,当浓度为1时的情况下吸附前后将没有浓度变化,使得孔径测试受限。
静态容量法
在低温(液氮浴)条件下,向样品管内通入一定量的吸附质气体(N2),通过控制样品管中的平衡压力直接测得吸附分压,通过气体状态方程得到该分压点的吸附量;
通过逐渐投入吸附质气体增大吸附平衡压力,得到吸附等温线;通过逐渐抽出吸附质气体降低吸附平衡压力,得到脱附等温线;相对动态法,无需载气(He),无需液氮杯反复升降;
由于待测样品是在固定容积的样品管中,吸附质相对动态法不流动,故叫静态容量法;
*标准
国内关于比表面积测试的现行有效*标准约有十几个,现列举几个比较常用的*标准方法:
GB/T19587-2004《气体吸附BET法测定固态物质比表面积》[1]
GB/T13390-2008《金属粉末比表面积的测定氮吸附法》
GB/T7702.20-2008《煤质颗粒活性炭试验方法比表面积的测定》
GB/T6609.35-2009《氧化铝化学分析方法和物理性能测定方法第35部分:比表面积的测定氮吸附法》
SY/T6154-1995《岩石比表面和孔径分布测定静态氮吸附容量法》
国内对于材料比表面积测测试机构有很多家,例如北科大分析检验ZX、*钢铁材料测试ZX等。
3影响因素
动态法
动态法比表面仪,与其它分析仪器类似,影响其精度主要取决于检测方法、管路设计和是否具备操作完全自动化。
完全自动化的比表面积分析仪对用户具备什么价值?
1、符合测试仪器行业的国际标准,同类国际产品全部是完全自动化的,人工操作的仪器国外早已经淘汰。[2]
2、比表面积分析测试其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的孔径测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。产品实现了完全的自动化,将测试人员从重复的机械式操作中解放出来,大大降低了他们的工作强度,提高了工作效率。
3、人工操作的仪器很大的一个局限性是:不同的测试人员操作时,对于平衡点等数据的判断会有偏差,这样很容易引入人为误差,而自动化操作的仪器,由于整个测试的平衡等条件的判断都是基于软件中设置好的标准,这样能很好保证,虽然是不同测试人员进行的测试,但测试结果的一致性会很好。产品通过实现完全自动化测试,大大降低了人为操作导致的误差,提高测试精度。
4、人工操作的仪器,由于需要操控的旋钮比较多,一般对操作人员的培训需要花费很多的时间,操作人员的熟练操作也会需要较长的一段时间,如果有操作人员离职,会导致新来员工的培训又需花费很多的时间和精力,既耽误工作,又浪费公司的资源;自动化的仪器,一般只需要掌握软件如何使用就可以进行样品测试,既节约培训时间,又可以减少公司人员流动导致的再培训资源浪费。产品通过实现测试过程完全自动化,大大降低公司培训成本,提高工作效率。
静态法
以比表面积1m2/g的样品为例,该样品0.5g对氮气的吸附量在BET分压范围内在标况下约0.1ml,在测试过程中的吸附环境液氮温度下的体积约0.03ml;样品管装样部分的剩余体积(也就是背景体积)约在3-5ml左右,要在3-5ml的样品管体积中准确定量出0.03ml的总吸附量且保证精度达到2%以内,可以算出要求压力传感器的精度要达到0.02%以上;但目前进口*的压力传感器的精度只有0.1%,而且通常比表面及孔径分析仪用的压力传感器精度为0.15%,也就是说目前*精度的压力传感器,即使温度场理想测定,液氮面理想恒定,环境温度理想准确条件下,对吸附量确定量的不确定度也只能达到0.003ml,即不确定度达到10%;若对于比表面再小或堆积密度小也就是装样量也难以很大的样品,其准确度就可想而知了。但对于中大比表面样品,一般吸附量不会那么微小,静态法的精度很容易保证在2%甚至1%以内便不是问题;
所以在小比表面样品的测试方面,静态法仪器测试的误差相对高精度的动态法仪器的误差大;静态法只能通过增加装样量来降低误差,常见的是静态一般都会为小比表面积样品配备大容量样品管,但由于背景体积(吸附腔体积)也随之增大,所以准确度提高也是有限的;这点是采用静态法仪器测试比表面积应考虑的因素。
4计算公式
参考国标GB/T24533-2009
放到气体体系的样品,其物质表面在低温下将发生物理吸附。当吸附达到平衡时,测量平衡吸附压力和吸附的气体流量,根据BET方程式(1)求出试样单分子层吸附量,从而计算出试样的比表面积。
(P/P0)/V(1-P/P0)=(C-1)/(VmC)×P/P0+1/(VmC)
5技术标准
国内关于比表面积测试的现行有效*标准约有十几个,现列举几个比较常用的*标准方法:
GB/T 19587-2004 《气体吸附BET法测定固态物质比表面积》
GB/T 13390-2008 《金属粉末比表面积的测定氮吸附法》
GB/T 7702.20-2008 《煤质颗粒活性炭试验方法比表面积的测定》
GB/T 6609.35-2009 《氧化铝化学分析方法和物理性能测定方法第35部分:比表面积的测定氮吸附法》
SY/T 6154-1995 《岩石比表面和孔径分布测定静态氮吸附容量法》
- 细胞计数板滴加多少体积细胞悬液
- 液滴研讨会/网络课程:液滴微流控的动态分析
微流控液滴技术是近年来在微流控芯片上发展起来的一种研究几微米至几百微米尺度范围内微液滴的生成、操控及应用的新技术。微液滴常作为微反应器,实现生化反应、试剂快速混合以及微颗粒合成等,极大地强化了微流控芯片的低消耗、自动化和高通量等优点。本次网络课堂主要介绍了微流控液滴的动态分析部分如速度场、表面活性剂等知识。
2月突出贡献榜
推荐主页
最新话题
参与评论
登录后参与评论