重金属检测|土壤世界里 “铬”你知道怎么检测吗?
来源:北极星环保网(华信博润科技www.walsingreen.cn整理)土壤-植物体系中的铬(Cr)主要以三价铬和六价铬两种价态存在,其中Cr(VI)(六价铬)毒性远远大于Cr(III)(三价铬)。外源Cr(VI)进入土壤后,一部分还原为Cr(III),同时游离态Cr(VI)和Cr(III)均可以被土壤吸附、固定(即老化),从而降低了其有效性。由于老化和还原过程是同时发生的,目前的研究仍未能区分两种反应对Cr(VI)植物毒性降低的贡献。因为Cr(VI)、Cr(III)在土壤中的老化与还原直接影响了植物受到铬危害的程度,所以广东省生态环境技术研究所刘同旭研究员团队建立了一个动力学模型,用于研究Cr(VI)进入土壤系统后的动力学转化过程。
研究内容:
采用外源添加Cr(VI)到土壤中,0-105天分时段取样,测定提取态Cr(VI)、Cr(III)含量变化。后期利用该土壤进行小麦相对根伸长实验,加以验证其植物毒害水平。根据不同时间EDTA (pH=7)提取态Cr(VI)、Cr(III)的含量,建立一个老化还原的动力学模型。模型拟合后可以计算不同土壤中Cr(VI)、Cr(III)老化的速率以及Cr(VI)还原速率-看表1。
表1土壤中提取态Cr(VI)还原与老化的反应过程
研究结果表明湖南水稻土中Cr(VI)的老化和还原速率快于山东潮土,而Cr(III)在潮土中老化速率较快(如图1所示)。根伸长试验结果表明,水稻土的相对根伸长为66.7%,潮土的相对根伸长为3.6%,说明水稻土中Cr(VI)的植物毒性明显减轻,而在潮土中植物毒害较大。
图1水稻土(a)和潮土(b)中提取态Cr(VI)和Cr(III)的含量
结果讨论
供试土壤性质如表2所示。两种土壤老化还原速率差异较大是因为铬的形态转化受pH、有机质、比表面积、非晶质铁氧化物等土壤性质的共同作用。土壤中非晶质铁氧化物含量越高,比表面积越大,Cr(VI)吸附更快,老化速率较快。有机质可以作为还原剂促进Cr(VI)还原成Cr(III),在pH近中性时(pH 6~7),还原作用也较强。Cr(III)老化速率主要受pH影响,在高pH值下Cr(III)易吸附、沉淀。
便携土壤重金属检测仪器-HM4000
HM4000:针对国内重金属污染的严峻形势和国家政策及规划的需要,英国 Trace2o公司设计并生产一款全新的便携式重金属分析仪一 Metalyser HM4000。该便携式分析仪HM4000具有操作简单、检测迅速准确和便于携带等优点。该仪器完全由 Trace2o公司在英国设计生产。HM4000仪器由 Metalyser手持端和现场土壤前处理装置组成。依照简单明确的操作步骤,即可在现场完成士壤样品的处理和测试。
该仪器是一款能够达到ppb检测级别的便携式土壤重金属分析仪,填补了市场的空白。仪器采用全防水设计的便携箱以及具有IP67防护等极的Metalyser HM4000。使HM4000成为一款全天候便携式土壤重金属分析仪。HM4000仪器基于溶出伏安法目前可以测土壤萃取液中五种不同的重金属,并可以实现土壤中PPB浓度级别的重金属污染物测试,相对于其他土壤分析仪具有检测下限低 重现性好,准确度高,回收率高等优势。
HM4000土壤重金属检测仪器特性和优点
使用HM4000可以实现现场土壤中重金属分析测试的目的,采样,称取,萃取测试,显示结果,在数分钟内即可完成。快速检测,现场分析,满足现场快速监测的需求可检测常见的土壤重金属污染物,铜(Cu),铅(Pb),镉(Cd)砷(As)和汞(Hg)利用简单,快捷,安全的前处理方式处理土壤样品:仅使用对环境无二次污染的萃取液进行处理,无需复杂的微波消解仪器。
随机附带图文并茂的操作说明书,简单易懂,无需具有较深化学背景的操作人员即可完成操作相对于XRF,AMS,ICP具有极强的价格优势相对于XRF仪器所获得数据,HM4000的数据更加准确,重现性更高具有更低的检出限,更适合土重金属污染的分析。
无需电脑即可完成所有操作,所有方法均内置于仪器内仪器采用坚固可靠的工业设计及制造材料,具有全天候分析仪器所具有的优点使用随机附带的便携式天平及其他附件,可以在现场完成精确的土填采集、称重处理等步骤,完全实现了现场测试的目的。
随机附带防护设备,为操作者提供了化学试剂的伤者防护土壤消解器设计坚固,防酸性化学试剂腐蚀,由 Metalyser手持端控制并由手持内置电池驱动为满足现场全天候的测试需要,仪器采用IPG7防护等级设计,井有相关的国际资质认证快速连接电极设计,操作者可以随时取下或安装内置存储单元可以1000组数据USB连接系统基于微软Windows系统的操作软件LCD显示屏可以显示测试数据图以及四向摇杆控制操作多种电源模式可供选择:可充电电池,220V电源,汽车点烟器电源简体中文及英语等多语言显示。