仪器网(yiqi.com)欢迎您!

| 注册登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

核磁法测试交联密度原理介绍

苏州纽迈分析仪器 2019-07-22 15:21:45 1043  浏览
  • 交联密度
      交联密度描述的是交联聚合物里面交联键的多少,一般用网链分子量的大小来表示。交联密度越大,也就是单位体积内的交联键越多,交联程度更大。对于用作塑料的交联聚合物来讲,比如环氧树脂,交联密度越大,其耐热性更好,拉伸强度增加,但是过高的交联度会导致冲击强度下降。 对于用作橡胶的交联聚合物,比如各种橡胶,交联密度大,力学强度更好,回弹性更好。

      目前橡胶的交联密度测试方法主要有应力松弛法、溶胀法等,然而这些方法都存在耗时长、灵敏度不高、对样品具有破坏性的特点,而核磁共振法近年来在测试交联密度方面显示出突出的优势。通过对烃链上的H分子运动进行测量,从而解析得出样品的交联密度。可以在样品无化学品介入、无损条件下,几秒钟之内准确地测定样品的交联密度。

    橡胶的交联结构
      橡胶的高分子链之间通过支链联结成一个三维空间网型大分子,形成交联结构。交联键类型和交联密度是交联结构中Z重要的参数,分别表示交联键具有的结构以及交联点以何种密度在橡胶分子链间分布。如图1所示,橡胶分子中大致存在三种交联形式的链,分别是交联链、悬尾链、自由链,各个链的H质子所受的束缚力依次减弱,而T2弛豫时间又反映出各个链的自由度的大小,假设T21在0.1-1ms的信号来源塑料高分子链交联链上氢质子信号,T2在1-10ms左右的信号来源于悬尾链上氢质子信号。通过对比其各自的T2弛豫时间,并通过一定的分析模型从而评价交联密度信息。

      下图是典型的氢质子的自旋自旋弛豫过程,90°射频脉冲使平衡磁化强度旋转到Y轴上,此时MXY=M0随后加入90°射频脉冲后,MXY呈指数形式衰减,如图4所示,当T2=Mz(t)=M0e-t/T2时,即横向弛豫时间T2为Mz恢复到0.63M0时所需的时间,由于处于不同物理环境的氢质子的衰减也各不相同,基于一定的假设,Z终得到的XDL模型的计算公式分别求出交联链信号、悬尾链信号、自由链信号占总信号的比例。


    核磁共振法与传统溶胀法测试交联密度数值的对比:

      上图是硫化橡胶的测试对比,核磁法可分别得到物理交联、化学交联和总交联,每个指标均反映样品内部不同的交联状态,与溶胀法对比发现,总交联度与溶胀法测试结果基本一致。而核磁法则具有非常突出的优势:
      快速:单个样品仅需几分钟即可完成测试;绿色:测试过程无需任何化学试剂;便捷:样品制备简单,对样品形态无要求;无损:同一样品可重复测试,可仅需纵向实验。



    在高分子材料领域,低场核磁共振可为您提供以下科研方案

      1)评价交联聚合体(尤其是橡胶,橡胶产品)的交联信息;
      2)评价交联的聚合体(尤其是橡胶,橡胶产品)的物性信息;
      3)使用过的聚合体材料老化过程的品质鉴定;
      4)基于橡胶的硫化,处理和生产条件优化的研究;
      5)固体,半硬的聚合体,凝胶体,乳状液和液体的分子活动性研究;
      6)固体基质中水分和水含量的成像和测定(例如:环氧树脂和半导体器材;
      7)环氧树脂和橡胶的硫化过程中硫化状态、粘度和过程的探测;
      8)样品中水或溶液粘合性和活动性的研究;
      9)聚合物中增塑剂或橡胶含量的测定;
      10)共混物或共聚物中橡胶含量测定;
      11)共聚物相对含量测定;
      12)橡胶胶乳中的固体含量测定;
      13)临界水及水合作用的研究;
      14)流变学的的研究,如粘性、密度、及材料的稳定性



    (来源:苏州纽迈分析仪器股份有限公司)

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

核磁法测试交联密度原理介绍

交联密度
  交联密度描述的是交联聚合物里面交联键的多少,一般用网链分子量的大小来表示。交联密度越大,也就是单位体积内的交联键越多,交联程度更大。对于用作塑料的交联聚合物来讲,比如环氧树脂,交联密度越大,其耐热性更好,拉伸强度增加,但是过高的交联度会导致冲击强度下降。 对于用作橡胶的交联聚合物,比如各种橡胶,交联密度大,力学强度更好,回弹性更好。

  目前橡胶的交联密度测试方法主要有应力松弛法、溶胀法等,然而这些方法都存在耗时长、灵敏度不高、对样品具有破坏性的特点,而核磁共振法近年来在测试交联密度方面显示出突出的优势。通过对烃链上的H分子运动进行测量,从而解析得出样品的交联密度。可以在样品无化学品介入、无损条件下,几秒钟之内准确地测定样品的交联密度。

橡胶的交联结构
  橡胶的高分子链之间通过支链联结成一个三维空间网型大分子,形成交联结构。交联键类型和交联密度是交联结构中Z重要的参数,分别表示交联键具有的结构以及交联点以何种密度在橡胶分子链间分布。如图1所示,橡胶分子中大致存在三种交联形式的链,分别是交联链、悬尾链、自由链,各个链的H质子所受的束缚力依次减弱,而T2弛豫时间又反映出各个链的自由度的大小,假设T21在0.1-1ms的信号来源塑料高分子链交联链上氢质子信号,T2在1-10ms左右的信号来源于悬尾链上氢质子信号。通过对比其各自的T2弛豫时间,并通过一定的分析模型从而评价交联密度信息。

  下图是典型的氢质子的自旋自旋弛豫过程,90°射频脉冲使平衡磁化强度旋转到Y轴上,此时MXY=M0随后加入90°射频脉冲后,MXY呈指数形式衰减,如图4所示,当T2=Mz(t)=M0e-t/T2时,即横向弛豫时间T2为Mz恢复到0.63M0时所需的时间,由于处于不同物理环境的氢质子的衰减也各不相同,基于一定的假设,Z终得到的XDL模型的计算公式分别求出交联链信号、悬尾链信号、自由链信号占总信号的比例。


核磁共振法与传统溶胀法测试交联密度数值的对比:

  上图是硫化橡胶的测试对比,核磁法可分别得到物理交联、化学交联和总交联,每个指标均反映样品内部不同的交联状态,与溶胀法对比发现,总交联度与溶胀法测试结果基本一致。而核磁法则具有非常突出的优势:
  快速:单个样品仅需几分钟即可完成测试;绿色:测试过程无需任何化学试剂;便捷:样品制备简单,对样品形态无要求;无损:同一样品可重复测试,可仅需纵向实验。



在高分子材料领域,低场核磁共振可为您提供以下科研方案

  1)评价交联聚合体(尤其是橡胶,橡胶产品)的交联信息;
  2)评价交联的聚合体(尤其是橡胶,橡胶产品)的物性信息;
  3)使用过的聚合体材料老化过程的品质鉴定;
  4)基于橡胶的硫化,处理和生产条件优化的研究;
  5)固体,半硬的聚合体,凝胶体,乳状液和液体的分子活动性研究;
  6)固体基质中水分和水含量的成像和测定(例如:环氧树脂和半导体器材;
  7)环氧树脂和橡胶的硫化过程中硫化状态、粘度和过程的探测;
  8)样品中水或溶液粘合性和活动性的研究;
  9)聚合物中增塑剂或橡胶含量的测定;
  10)共混物或共聚物中橡胶含量测定;
  11)共聚物相对含量测定;
  12)橡胶胶乳中的固体含量测定;
  13)临界水及水合作用的研究;
  14)流变学的的研究,如粘性、密度、及材料的稳定性



(来源:苏州纽迈分析仪器股份有限公司)

2019-07-22 15:21:45 1043 0
环氧树脂交联密度-低场核磁法

环氧树脂交联密度-低场核磁法

环氧树脂属于热固性树脂,同固化剂混合后,通过环氧树脂分子和固化剂分子的相互接触、缠绕达到均匀分布的状态。环氧基同固化剂氨基中的活性氢发生缩合聚合反应,从而形成高分子量的环氧化合物,具备了耐热、高强度、耐水、耐溶剂、耐盐雾、粘接强度、耐压绝缘等使用性能。环氧树脂的物理状态变化是由化学变化引起的,逐步聚合的反应程度将直接影响固化物的zui终使用性能。

交联密度就是交联聚合物里面交联键的多少,一般用网链分子量的大小来表示。交联密度越大,也就是单位体积内的交联键越多,交联程度更大。对于用作塑料的交联聚合物来讲,比如环氧树脂,交联密度越大,其耐热性更好,拉伸强度增加,但是过高的交联度会导致冲击强度下降。对于用作橡胶的交联聚合物,比如各种橡胶,交联密度大,力学强度更好,回弹性更好。

环氧树脂交联密度是衡量聚合反应度的指标,交联密度对环氧树脂zui终性能的影响至关重要,一般环氧体系需要达到75%甚至更高的交联度,性能才能得到体现。

低场核磁法如何环氧树脂交联密度:

低场核磁法是研究高分子材料中分子动力学的一种非常重要和有效的手段.该技术的一个重要特点是可以通过合理的实验方法,实现对研究体系中从低频(Hz)到中频(kHz)乃至高频(MHz)范围内分子运动的观测.因此.核磁法非常适合研究高分子体系中各类不同尺度分子运动.高分子材料中分子运动与交联密度密切相关,通过分子运动的信息即可反映样品的交联密度。

低场核磁法环氧树脂交联密度测试原理:

低场核磁法的主要检测对象是氢核(1H),由于聚合物中不同链段上的H所处的周围环境不一致,H的自旋磁矩(核自旋)存在差异。施加射频脉冲后,自旋系统在恢复热平衡状态的过程中表现出来的弛豫行为不同,通过弛豫时间的差异可以体系聚合物的分子动力学信息。而分子分子动力学信息直接与聚合物的交联密度、老化、填充剂相关。

分子内和分子间氢质子的偶极相互作用产生核磁共振的横向弛豫。当温度远远高于聚合物的玻璃态温度时,聚合物网络中的这种偶极相互作用被认为是热分子运动的平均。由于聚合物单链中的氢质子被作为核磁共振测量的探针,于是一种修正的单链模型被引入并用来解释聚合物的横向弛豫。

固化体系环氧树脂交联密度提升的途径:

1. 提高固化温度:排除爆聚前提下,低温固化体系在常温下具有更高交联度。

2.延长固化时间:延长固化时间能提升交联度,随着固化的进程,位阻达到一定的程度,交联度提升幅度和程度就会大打折扣。

3.促进剂的作用:促进剂能降低体系活化能,促进体系放热,用量的大小跟提高活性的程度有关。但随着位阻的增大,提升的幅度同样有限。

4.环氧体系中其余材料的配合:含吸电子基团的材料有延迟反应的效果,含供电子基团材料有促进效果。如酯类延迟反应,酚类加速放热,含硅醇基的活性硅微粉有促进效果等等。

5.阶段性升温固化:一定温度条件下达到一定交联度以后,进而提升固化温度,外加能量越过位阻继续反应,从而进一步提升交联度。

2022-05-25 09:52:05 369 0
动态热机械分析法dma交联密度与核磁法交联密度

动态热机械分析法dma交联密度与核磁法交联密度

动态热机械分析法dma:

热分析的本质是温度分析。热分析技术是在程序温度(指等速升温、等速降温、恒温或步级升温等)控制下测量物质的物理性质随温度变化,用于研究物质在某一特定温度时所发生的热学、力学、声学、光学、电学、磁学等物理参数的变化。按一定规律设计温度变化,即程序控制温度,故其性质既是温度的函数也是时间的函数。

dma交联密度分析原理:

物质在温度变化过程中可能发生一些物理变化(如玻璃化转变、固相转变)和化学变化(如熔融、分解、氧化、还原、交联、脱水等反应),这些物质结构方面的变化必定导致其物理性质相应的变化。因此,通过测定这些物理性质及其与温度的关系,就有可能对物质结构方面的变化作出相应的分析,进而反映交联密度的变化。

核磁法:

核磁法是研究高分子材料中分子动力学的一种非常重要和有效的手段.该技术的一个重要特点是可以通过合理的实验方法,实现对研究体系中从低频(Hz)到中频(kHz)乃至高频(MHz)范围内分子运动的观测.因此.核磁法非常适合研究高分子体系中各类不同尺度分子运动.高分子材料中分子运动与交联密度密切相关,通过分子运动的信息即可反映样品的交联密度。

核磁法交联密度原理:

低场核磁法的主要检测对象是氢核(1H),由于聚合物中不同链段上的H所处的周围环境不一致,H的自旋磁矩(核自旋)存在差异。施加射频脉冲后,自旋系统在恢复热平衡状态的过程中表现出来的弛豫行为不同,通过弛豫时间的差异可以体系聚合物的分子动力学信息。而分子分子动力学信息直接与聚合物的交联密度、老化、填充剂相关。

分子内和分子间氢质子的偶极相互作用产生核磁共振的横向弛豫。当温度远远高于聚合物的玻璃态温度时,聚合物网络中的这种偶极相互作用被认为是热分子运动的平均。由于聚合物单链中的氢质子被作为核磁共振测量的探针,于是一种修正的单链模型被引入并用来解释聚合物的横向弛豫。核磁法利用对应的分析模型来评价材料的交联密度。

 

2022-05-30 15:30:16 382 0
聚丙烯二甲苯可溶物原理与方法介绍(核磁法)

聚丙烯二甲苯可溶物原理与方法介绍(核磁法)

聚丙烯(PP)是无色半透明、无毒的热塑性树脂,与其它通用热塑性塑料相比,具有相对密度小、价格低以及综合性能较好等特点,被广泛地应用于化工、建筑、家电、农业、交通运输等多个领域。

按照取代甲基的立体位置排列方向和次序的不同,聚丙烯可分为等规、间规和无规聚丙烯三种,一般工业生产的均聚聚丙烯以等规物为主要成分。本文主要介绍聚丙烯二甲苯可溶物原理与方法介绍(核磁法)的原理。


等规和间规聚丙烯属于立构规整性聚合物,而表示立构规整性聚合物含量的百分数又称为等规度。无规部分是可以溶解在二甲苯溶液中的,而等规部分不可溶。先加热,溶解,冷却,过滤。测出固体的含量。就可以得到等规度了。溶解的是非等规物,就是无规物(二甲苯可溶物)。

通过测定二甲苯可溶物可换算出聚丙烯等规度,能够了解聚丙烯分子的空间结构规整程度和产品的结晶性能。等规度越高,其规整程度、结晶度也越高,产品的硬度、刚度、模量、断裂和屈服强度等机械性能都有所增加,熔点、热稳定性、耐老化性和耐幅射性能也相应提高,而韧性、抗冲击性、断裂伸长率等性能则有所下降。

目前测试聚丙烯二甲苯可溶物常用的分析方法主要有:有机溶剂萃取称量法和小核磁法等。

有机溶剂萃取称量法萃取时间长,需要24个小时,溶剂有毒有害。且受到诸多因素的影响,如:聚丙烯颗粒大小、试样的干燥程度、试样量、萃取溶剂的使用量、抽提次数、试样萃取时间、温度、试样冷却时间和萃取后烘干时间等等,都对结果的准确度有影响。

小核磁法具有分析速度快,准确度高、无污染和成本低等优点,适用于研发与工业质检。

小核磁测聚丙烯二甲苯可溶物原理

小核磁测聚丙烯二甲苯可溶物的原理是:采用射频脉冲激发样品,使处于低能级的原子核跃迁到高能级。当外加射频脉冲关闭后,高能级的原子核回跃迁到低能级,此时产生了核磁共振信号。所观测到的核磁信号是随时间指数衰减的信号,信号衰减的过程称为驰豫过程。该衰减信号可以提供两个信息,一是,核磁信号的强度取决于样品中所测量原子核的数目,二是,信号衰减的速度取决于所测量原子核的运动状况。等规、间规聚丙烯的核磁信号衰减得快,而无规聚丙烯中的核磁信号衰减慢得多。

基于核磁信号的这两个特点,对聚丙烯进行不同的激发和采样,可以得到对应的数据。进一步利用等规和间规聚丙烯共振衰减信号与正庚烷萃取值之间的比例关系,建立线性关系的标准曲线,并由此准确测定聚丙烯的等规度。

小核磁测聚丙烯二甲苯可溶物的原理与小核磁分析软件

2023-02-08 14:20:31 165 0
核磁法在聚合物材料交联密度,老化,疲劳方面的应用

1. 聚合物老化

聚合物材料如橡胶有很重要的用途,聚合物的某些独有特性的丧失(老化),是一项重要的损耗并影响产品的可靠性。聚合物的老化是一个复杂过程,主要发生在加热、气体、射线和机械应力等外界条件下。

1) 射线对聚合物影响

2) 机械应力对聚合物影响

3) 热量损害对聚合物影响

4) 化学损害对聚合物影响     

2. 聚合物水合与干燥

聚合物干燥过程中水分分布是聚合物制造业关心的问题,人们需要一种检测水气分布的方法,从而能更直接的观察干燥或吸水时水分的传输机制。基于核磁共振的技术在近期表现出检测水分迁徙的zhuo越性能,并且对样品无损伤。同时,核磁还提供弛豫时间的信息,不仅给出水分的含量,还同时给出水分分布。无损伤,无入侵性,保证同一样品的纵向比较。      

3. 聚合物生产质量控制

低场核磁分析仪是检测聚合物的新手段,它提供了实时监测聚合物品质的可能,分析速度快,无损伤,几乎不需要样品预处理,是工业质量控制的shou选设备。      

4. 聚合物结晶、融化的动力学研究

磁共振技术能同时测定聚合物中晶体区,融化区和非晶体区,利用其特有的弛豫时间参数,对样品无损伤,迅速准确的给出反映活动性数据。      

5. 聚合物成分检测

价格经济的低场核磁技术能提取交联链的顺序分布,因此能灵敏的反映交联异构和其他拓扑约束。  


(来源:苏州纽迈分析仪器股份有限公司)

2019-06-17 09:53:31 491 0
纤维上油率测试-核磁法

纤维上油率测试实验

PQ001核磁共振纤维上油率分析仪

化学纤维含油率是指化学纤维上油剂干重占含油纤维干重的百分率。纤维上油率是指化学纤维上油剂干重占脱油剂后纤维干燥质量的百分率。而纤维含油率的高低与纤维的可纺性能关系密切,含油率低的纤维容易产生静电现象,含油率过高则容易产生粘缠现象,都会影响纺织生产加工的正常进行。化学纤维油剂的含量一般掌握在满足抗静电性和平滑性等要求的情况下,含油剂以少为好,测量含油率通常采用萃取法、低场核磁共振法。


低场核磁共振法测化纤含油率的原理是通过向纤维样品发射脉冲磁场。当磁场取消时,测试样品的氢核(H)发出的磁信号,由于纤维发出的磁信号比油发出的信号衰减快,从两者的差异即可通过一定的算法换算出其成分的比例。


测试过程:使用3~6个已知的油含量的纤维样品进行定标后,未知样品可在30秒~3分钟钟内完成测试。测试过程快速无损,可实现工业在线过程测试。



与化学方法相比,核磁法具有更好的重现性,不需要化学溶剂,操作简单。



核磁法测试纤维含油率的优势:

1、测试速度快,最快可在几秒内完成测试;

2、仪器校准简单;

3、与传统方法相比,核磁法的重复性和重现性要好得多;

4、核磁法可用于工业生产过程中质检和质控,节省人工、明显提高效率;

5、仪器操作简单,不需要专门的技术人员,未经培训的人员也易于操作;

6、功能强大,适用于纤维上油率测试;

7、对样品形状无要求。

8、核磁法是非侵入性,非破坏性测试,同一样品根据需要可进行多次重复测量;

9、核磁信号是由整个样品体积内所有氢核产生的,测试结果不取决于样品表面或样品颜色;

 

推荐测试仪器

PQ001核磁共振纤维上油率分析仪是一款纤维企业专用小核磁,已成熟应用于纤维含油率的分析测试,配有专业的纤维上油率测试软件,测试方便快捷,软件操作人性化,非常容易使用。 PQ001在外观设计、硬件配置、软件操作方面融合了先进的技术并不断升级,确保产品性能与友好的客户体验。


主要技术指标:

1. 磁体类型:永磁体

2. 磁场强度:0.5±0.08T

3. 探头线圈直径:25mm

核磁共振纤维上油率分析仪PQ001-Fiber



2022-01-26 18:38:49 297 0
BMI交联密度如何用低场核磁评价

BMI交联密度如何用低场核磁评价

双马来酰亚胺(BMI)树脂是一类结构树脂材料,具有优良的力学性能和耐高温性能,是广泛应用于先进复合材料的高性能树脂基体之一。双马来酰亚胺树脂是一种耐热性能、力学性能等各项性能都优异的热固性树脂,而且BMI还具有耐腐蚀、耐辐射、收缩率小等优点被广泛应用于汽车、机械、jun工和航空等领域。航空航天领域使用的BMI需要同时具有突出的耐高温性能、优异的尺寸稳定性以及力学性能。

BMI交联密度与哪些性能有关:

BMI树脂的固化反应属于加成型聚合反应,成型过程中无低分子副产物放出,且容易控制。固化物结构致密,缺陷少,因而BMI具有较高的强度和模量。但是由于固化物的交联密度高、分子链刚性强而使BMl呈现出极大的脆性,它表现在抗冲击强度差、断裂伸长率小、断裂韧性低。

工业生产的树脂由低聚物线性预聚物和双马来酰亚胺(BMI)交联剂的混合物组成。将不同量的BMI“镶嵌”在聚合物上,并通过热可逆DA反应与两个交联分子呋喃和马来酰亚胺连接。人们发现,改变BMI交联密度(交联分子)的数量可以调节材料的刚度。双马来酰亚胺树脂(BMI)以其优异的耐热性、电绝缘性、透波性、耐辐射、阻燃性,良好的力学性能和尺寸稳定性,成型工艺类似于环氧树脂等特点,被广泛应用于航空、航天、机械、电子等工业领域中,先进复合材料的树脂基体、耐高温绝缘材料和胶粘剂等。

低场核磁评价BMI交联密度的基本原理:

低场核磁法的主要检测对象是氢核(1H),由于聚合物中不同链段上的H所处的周围环境不一致,H的自旋磁矩(核自旋)存在差异。施加射频脉冲后,自旋系统在恢复热平衡状态的过程中表现出来的弛豫行为不同,通过弛豫时间的差异可以体系聚合物的分子动力学信息。而分子分子动力学信息直接与聚合物的交联密度、老化、填充剂相关。

分子内和分子间氢质子的偶极相互作用产生核磁共振的横向弛豫。当温度远远高于聚合物的玻璃态温度时,聚合物网络中的这种偶极相互作用被认为是热分子运动的平均。由于聚合物单链中的氢质子被作为核磁共振测量的探针,于是一种修正的单链模型被引入并用来解释聚合物的横向弛豫。根据这一分析模型,低场核磁共振技术可以用于评价BMI交联密度。

2022-05-26 23:13:22 250 0
硫磺粉末含油量测试(低场核磁法)

硫磺粉末含油量测试(低场核磁法)

背景介绍:

化学粉末(如硫磺)的生产过程中,根据产品质量和特性要求会添加一定量的油,以提升产品性能以及方便生产和加工。粉末中还包含水分。这些液体在粉末中的含量是影响产品质量的重要参数。为确保产品质量稳定,需要准确,快速进行测量。 低场核磁快速可快速完成油、水含量测试,制样过程非常简单,为实现工业生产过程中的质量检测和质量控制提供可能。


传统测试方法介绍:

传统方法是使用溶剂萃取法检测硫磺中的含油量,该方法检测过程复杂,耗时长,需要有专业技术人员进行操作,人为误差较大,此外,萃取液属于有毒试剂,对操作人员健康和安全存在危害,该方法在工业中越来越难以接受。


硫磺粉末油含量测试(低场核磁法)基本原理:

使用自旋回波序列进行测量,图一是自旋回波序列与检测到的核磁信号。在90度射频脉冲后t1处测量了自由感应衰减(FID)NMR信号。此时信号幅度(A1)与样品的两个液相(水分和油分)中的H质子数成正比。

180度脉冲后,检测自旋回波信号幅度为A2,此时水的信号已经衰减为0,A2仅为油的信号。 因此,两个信号幅度之差A1-A2与样品的含水量成正比。



使用已知的水分、油含量的样品进行定标后,未知样品可在30秒~3分钟钟内完成测试。测试过程快速无损,可实现工业在线过程测试。



此外,与化学方法相比,核磁法具有更好的重现性,不需要化学溶剂,并且可以由未经培训的人员进行操作。


硫磺粉末含油量测试(低场核磁法)


2022-04-13 16:40:48 247 0
聚丙烯等规度测试标准方法(核磁法)

聚丙烯等规度测试标准方法(核磁法)

聚丙烯(PP)是无色半透明、无毒的热塑性树脂,与其它通用热塑性塑料相比,具有相对密度小、价格低以及综合性能较好等特点,被广泛地应用于化工、建筑、家电、农业、交通运输等多个领域。

按照取代甲基的立体位置排列方向和次序的不同,聚丙烯可分为等规、间规和无规聚丙烯三种,一般工业生产的均聚聚丙烯以等规物为主要成分。本文主要介绍聚丙烯等规度测试标准方法(核磁法)。

等规和间规聚丙烯属于立构规整性聚合物,而表示立构规整性聚合物含量的百分数又称为等规度。

通过测定等规度,能够了解聚丙烯分子的空间结构规整程度和产品的结晶性能。等规度越高,其规整程度、结晶度也越高,产品的硬度、刚度、模量、断裂和屈服强度等机械性能都有所增加,熔点、热稳定性、耐老化性和耐幅射性能也相应提高,而韧性、抗冲击性、断裂伸长率等性能则有所下降。

目前测试聚丙烯等规指数常用的分析方法主要有:有机溶剂萃取称量法和小核磁法等。

有机溶剂萃取称量法萃取时间长,需要24个小时,溶剂有毒有害。且受到诸多因素的影响,如:聚丙烯颗粒大小、试样的干燥程度、试样量、萃取溶剂的使用量、抽提次数、试样萃取时间、温度、试样冷却时间和萃取后烘干时间等等,都对结果的准确度有影响。

小核磁法具有分析速度快,准确度高、无污染和成本低等优点,适用于研发与工业质检。

聚丙烯等规度测试标准方法(核磁法)

聚丙烯等规度测试标准方法(核磁法)是:采用射频脉冲激发样品,使处于低能级的原子核跃迁到高能级。当外加射频脉冲关闭后,高能级的原子核回跃迁到低能级,此时产生了核磁共振信号。所观测到的核磁信号是随时间指数衰减的信号,信号衰减的过程称为驰豫过程。该衰减信号可以提供两个信息,一是,核磁信号的强度取决于样品中所测量原子核的数目,二是,信号衰减的速度取决于所测量原子核的运动状况。等规、间规聚丙烯的核磁信号衰减得快,而无规聚丙烯中的核磁信号衰减慢得多。

聚丙烯等规度测试标准方法(核磁法)

基于核磁信号的这两个特点,对聚丙烯进行不同的激发和采样,可以得到对应的数据。进一步利用等规和间规聚丙烯共振衰减信号与正庚烷萃取值之间的比例关系,建立线性关系的标准曲线,并由此准确测定聚丙烯的等规度。

聚丙烯等规度测试标准方法(核磁法)与小核磁分析软件

2023-01-30 17:49:51 215 0
生物柴油含量检测-时域核磁法

为什么要检测生物柴油含量

生物柴油是一种由植物油、动物油、废弃物油脂等生物质材料经过酯化、脱水等化学反应制成的油品,其化学成分和石油柴油基本相同,但具有更高的氧含量和较低的排放,是一种可再生的清洁能源。

通过将柴油与生物柴油混合,可以减少柴油排放,有关立法已经完成,要求在石油柴油与生物柴油混合物中引入最-低水平的生物柴油。因此,有必要制定出标准的试验方法来测定柴油-生物柴油混合物中的生物柴油含量,以便实施此类立法。

生物柴油含量检测-时域核磁

时域核磁的弛豫行为(弛豫时间、信号幅度、峰面积)和样品中分子的运动性及质子含量有关。柴油主要由长链烷烃组成,生物柴油中含有甲基亚油酸甘油酯等大量的不饱和脂肪酸甘油酯,两者分子运动性有着明显差异,信号幅度/峰面积和分子量呈正相关,利用此特性可区分柴油、生物柴油并定量混合柴油中生物柴油含量。      

               生物柴油含量与信号幅度关系曲线

时域核磁法检测生物柴油含量的优势

1、虽然样品需要恒温处理,但核磁法测量时间短(通常几十秒),测试过程简单;

2、仪器操作简单,简单需培训即可使用仪器;

3、核磁共振技术是无损检测技术,可对同一样品进行重复测量或进行其他测量;

4、核磁法校准方便,仪器稳定可靠;

5、可现场、可在线测量;

核磁共振分析仪PQ001-GU


2023-06-09 18:08:32 142 0

4月突出贡献榜

推荐主页

最新话题