由于取代基或溶剂的影响,使Z大吸收峰向长波方向移动的现象称为红移(red shift)现象。由于取代基或溶剂的影响,使Z大吸收峰向短波方向移动的现象称为蓝(紫)移(blue shift)现象。波长与电子跃迁前后所占据轨道的能量差成反比,因此,能引起能量差变化的因素如共轭效应、超共轭效应、空间位阻效应及溶剂效应等都可以产生红移现象或紫移现象。
将烷基引入共轭体系时,烷基中的C一H键的电子可以与共轭体系的π电子重叠,产生超共轭效应,其结果使电子的活动范围增大,吸收向长波方向位移。超共轭效应增长波长的作用不是很大,但对化合物结构的鉴定,还是有用的。下表列举的数据表明了在共轭体系上的烷基对吸收波长的影响。 烷基对共轭体系吸收波长的影响化合物 λmax/nm CH₂=CH-CH =CH₂ 217 CH₃-CH=CH-CH=CH₂ 222 CH₃-CH=CH-CH=CH-CH₃ 227 CH₂=C(CH₃)-C(CH₃)=CH₂ 227 CH₂=CH=C(CH₃)=O 219 CH₃-CH=CH-C(CH₃)=O 224 (CH₃)₂C=CH-C(CH₃)=O 235 C₆H₆ 255 CH₃-C₆H₅ 261 由于溶剂与溶质分子间形成氢键、偶极极化等的影响,也可以使溶质吸收波长发生位移。如π→π*跃迁,激发态比基态的极性强,因此极性溶剂对激发态的作用比基态强,可使激发态的能量降低较多,以使基态与激发态之间的能级的能差减小,吸收向长波位移,即发生红移现象。又如n→π*跃迁,在质子溶剂中,溶质氮或氧上的n轨道中的电子可以被质子溶剂质子化,质子化后的杂原子增加了吸电子的作用,吸引n轨道的电子更靠近核而能量降低,故基态分子的n轨道能量降低,n→π*跃迁时吸收的能量较前为大,这使吸收向短波位移,即发生紫移现象,见下图。
由此可见,溶剂对基态、激发态与n态的作用是不同的,对吸收波长的影响亦不同,极性溶剂比非极性溶剂的影响大。因此在记录吸收波长时,需要写明所用的溶剂。紫外中常用的溶剂为水、甲醇,乙醇、己烷或环己烷、醚等。溶剂木身也有一定的吸收带,虽然其κ值小,但浓度一般比待测物的浓度大好几个数量级,因此,如果与溶质的吸收带相同或相近,将会有干扰,选择溶剂时,要予以注意。 紫外光谱在破析一系列维生素、KJ素及天然产物的化学结构曾起过重要作用,如维生素A1、维生素A2、维生素B12、维生素B1、青霉素、链霉素、土霉素、萤火虫尾部的发光物质等。
例如利血平具有两个共轭体系结构,水解得到利血平酸和3,4,5-三甲氧基苯甲酸。利血平酸经LiAlH4还原为利血平醇,其光谱与2,3-二甲基-6-甲氧基吲哚的紫外光谱相似。将合成的利血平醇与3,4,5-三甲氧基苯甲酸的紫外光谱叠加起来所得谱线与利血平的吸收曲线基本吻合,进一步由合成Z后确定利血平的结构。 光致变色现象是指在光的照射下颜色发生可逆变化的现象,可通过紫外光谱进行测试研究。如螺恶嗪类化合物A的环己烷溶液是没有颜色,但在365nm连续的紫外光的照射下,溶液变成蓝色,在可见区域产生吸收。随照射时间的延长,吸收峰的强度逐渐变大,直至不再变化为止,将化合物的溶液放在暗处,其在可见光区域的吸收会逐渐下降。
光致变色材料作为一类新型功能材料,有着十分广阔的应用前景。例如可以作为光信息存储材料、光开关、光转换器等,这些材料在机械、电子、纺织、国防等领域都大有作为。光致变色涂料、光致变色玻璃、光致变色墨水的研制和开发,具有现实性的应用意义。除了以上的应用,光致变色材料还可以作为自显影感光 胶片、全息摄影材料、防护和装饰材料、印刷版和印刷电路和伪装材料等。
特别要指出的是,光致变色化合物作为可擦重写光存储材料的研究,是近些年来光致变色领域中研究的热点之一。作为可擦写光存储材料的光致变色光存储介质,应满足在半导体激光波长范围具有吸收、非破坏性读出、良好的热稳定性、优良的抗疲劳性和较快的响应速度等条件。