动态光散射Dynamic Light Scattering (DLS),也称光子相关光谱Photon Correlation Spectroscopy (PCS) ,准弹性光散射quasi-elastic scattering,测量光强的波动随时间的变化。DLS技术测量粒子粒径,具有准确、快速、可重复性好等优点,已经成为纳米科技中比较常规的一种表征方法。随着仪器的更新和数据处理技术的发展,现在的动态光散射仪器不仅具备测量粒径的功能,还具有测量Zeta电位、大分子的分子量等的能力。
(一)动态光散射的基本原理
1. 粒子的布朗运动Brownian motion导致光强的波动
微小粒子悬浮在液体中会无规则地运动
布朗运动的速度依赖于粒子的大小和媒体粘度,粒子越小,媒体粘度越小,布朗运动越快。
2. 光信号与粒径的关系
光通过胶体时,粒子会将光散射,在一定角度下可以检测到光信号,所检测到的信号是多个散射光子叠加后的结果,具有统计意义(见附件一)。瞬间光强不是固定值,在某一平均值下波动,但波动振幅与粒子粒径有关(见附件二)。某一时间的光强与另一时间的光强相比,在极短时间内,可以认识是相同的,我们可以认为相关度为1,在稍长时间后,光强相似度下降,时间无穷长时,光强完全与之前的不同,认为相关度为0(此原理见附件三)。根据光学理论可得出光强相关议程(见附件四)。之前提到,正在做布朗运动的粒子速度,与粒径(粒子大小)相关(Stokes - Einstein方程)。
Stokes - Einstein方程[1]
大颗粒运动缓慢,小粒子运动快速。如果测量大颗粒,那么由于它们运动缓慢,散射光斑的强度也将缓慢波动。类似地,如果测量小粒子,那么由于它们运动快速,散射光斑的密度也将快速波动。附件五显示了大颗粒和小粒子的相关关系函数。 可以看到,相关关系函数衰减的速度与粒径相关,小粒子的衰减速度大大快于大颗粒的。Z后通过光强波动变化和光强相关函数计算出粒径及其分布(见附件六)。
3. 分布系数(particle dispersion index,PDI)
分布系数体现了粒子粒径均一程度,是粒径表征的一个重
要指标。
< 0.05 单分散体系,如一些乳液的标样。
< 0.08 近单分散体系,但动态光散射只能用一个单指数衰减的方法来分析,不能提供更高的分辨率。
0.08 - 0.7 适中分散度的体系。运算法则的Z佳适用范围。
> 0.7 尺寸分布非常宽的体系,很可能不适合光散射的方法分析。
4. 光强分布、体积分布和数量分布的关系
说明光强、体积和数量分布之间差异的简单方式,是考虑只含两种粒径(5nm和10nm)、但每种粒子数量相等的样品。附件七显示了数量分布结果。 可以预期有两个同样粒径(1:1)的峰,因为有相等数量的粒子。第二个图显示体积分布的结果。 50nm粒子的峰区比5nm(1:1000比值)的峰区大1000倍。 这是因为,50nm粒子的体积比5nm粒子的体积(球体的体积等于4/3π(r)3)大1000倍。第三个图显示光强度分布的结果。 50nm粒子的峰区比5nm(1:1000比值)的峰区大1,000,000倍(比值1:1000000)。 这是因为大颗粒比小粒子散射更多的光(粒子散射光强与其直径的6次方成正比 — (得自瑞利近似)。
(二)动态光散射样品要求
基本要求
样品应该较好的分散在液体媒体中
理想条件下,分散剂应具备以下条件:
透明
和溶质粒子有不同的折光指数
应和溶质粒子相匹配 (也就是:不会导致溶胀, 解析或者缔合)
掌握准确的折光指数和粘度,误差小于0.5%
干净且可以被过滤
粒径下限
依赖于:
粒子相对于溶剂产生的剩余光散射强度
溶质和溶剂折光指数差
样品浓度
仪器敏感度
激光强度和波长