以ENVI5.3下GF2数据预处理为例说明融合的操作过程:
在进行图像融合之前,我们需要对正射校正后的多光谱和全色数据进行浏览,查看二者是否完全配准,如果没有完全配准,就需要对其进行配准,这里我们推荐大家使用ENVI中的自动配准流程化工具,以全色数据为基准对多光谱数据进行配准,此工具的位置在:Geometric Correction > Registration > Image Registration Workflow
对本次操作中正射校正后的多光谱和全色数据的对比发现,二者配准的比较好(目前,大部分高分辨率数据正射校正后多光谱和全色数据配准的均比较好),所以我们这里不进行图像配准,直接进行图像融合。图像融合方法我们使用从ENVI5.2版本起新增的NNDiffuse Pan Sharpening方法,也可以使用Gram-Schmidt Pan Sharpening等其它方法进行融合。
在进行融合之前,需要说明的是:经过测试,不同的数据存储格式会对融合的速度产生影响,当多光谱数据的存储格式为BIL或BIP时,其融合速度较BSQ格式来说,可以提高三倍左右。所以,我们建议大家融合之前可以先查看其数据存储格式,如果是BSQ,可以将其转化为BIL或BIP(转换时需要用到的工具:Raster Management > Convert Interleave),以便提高融合效率。
在Toolbox中,选择Extensions > NNDiffuse Pan Sharpening (BIL),弹出NNDiffuse Pan Sharpening面板。Input Low Resolution Raster选择上一步正射校正后的多光谱数据,
Input High Resolution Raster选择上一步正射校正后的全色数据,其他参数保持默认。这里,需要说明的是NNDiffuse Pan Sharpening工具要求输入的多光谱和全色数据的空间分辨率是整数倍的(比如:本例中正射校正时分别将多光谱的全色的分辨率重采样为4米和1米,就是为了方便该工具的使用)。如果二者不是整数倍,使用此工具时需要将其重采样成整数倍;该工具对输入文件还有一些要求,平时我们使用的数据也基本满足这些要求,如果使用过程中报错可以查看帮助文档,判断输入数据是否满足相应要求。
至此,我们已经完成了GF2数据图像融合处理,融合结果局部截图如下所示:
补充下:
完整的高分二号(GF2)数据预处理操作流程在这: