无线电测向一般有以下几种方法:
2.1、幅度比较式测向体制
幅度比较式测向体制的工作原理是:依据电波在行进中,利用测向天线阵或测向天线的方向特性,对不同方向来波接收信号幅度的不同,测定来波方向。 幅度比较式测向体制的特点:测向原理直观明了,一般来说系统相对简单,体积小,重量轻,价格便宜。存在间距误差和极化误差,抗波前失真的能力受到限制。频率覆盖范围、测向灵敏度、准确度、测向时效、抗多径能力和抗干扰能力等重要指标,要根据具体情况做具体分析。
2.2、干涉仪测向体制
干涉仪测向体制的测向原理是:依据电波在行进中,从不同方向来的电波到达测向天线阵时,在空间上各测向天线单元接收的相位不同,因而相互间的相位差也不同,通过测定来波相位和相位差,即可确定来波方向。在干涉仪测向方式中,是直接测量测向天线感应电压的相位,而后求解相位差,其数学公式与幅度比较式测向的公式十分相似。 相关干涉仪测向:是干涉仪测向的一种,它的测向原理是:在测向天线阵列工作频率范围内和360度方向上,各按一定规律设点,同时在频率间隔和方位间隔上,建立样本群,在测向时,将所测得的数据与样本群进行相关运算和插值处理,以获得来波信号方向。 干涉仪测向体制的特点:采用变基线技术,可以使用中、大基础天线阵,采用多信道接收机、计算机和FFT技术,使得该体制测向灵敏度高,测向准确度高,测向速度快,可测仰角,有一定的抗波前失真能力。该体制极化误差不敏感。干涉仪测向是当代比较好的测向体制,由于研制技术较复杂、难度较大,因此造价较高。干涉仪测向对接收信号的幅度不敏感,测向天线在空间的分布和天线的架设间距,比幅度比较式测向灵活,但又必须遵循某种规则。例如:可以是三角形,也可以是五边形,还可以是L形等。
2.3、多普勒测向体制
多普勒测向体制的测向原理:依据电波在传播中,遇到与它相对运动的测向天线时,被接收的电波信号产生多普勒效应,测定多普勒效应产生的频移,可以确定来波的方向。 为了得到多普勒效应产生的频移,必须使测向天线与被测电波之间做相对运动,通常是以测向天线在接收场中,以足够高的速度运动来实现的,当测向天线完全朝着来波方向运动时,多普勒效应频移量(升高)Z大。 多普勒测向,通常不是直接旋转测向天线,因为这在工程上难于实现,它是将多个天线架设在同心圆的圆周上,电子开关顺序快速接通各个天线,等效于旋转测向天线。人们称这种测向机为准多普勒测向机。 多普勒测向体制的特点:可以采用中、大基础天线阵,测向灵敏度高,准确度高,没有间距误差,极化误差小,可测仰角,有一定的抗波前失真能力。多普勒测向体制的缺欠是抗干扰性能较差,如:遇到同信道干扰、调频调制干扰时,会产生测向误差。该体制尚在发展之中,改进会使系统变得复杂,造价会随之升高。
2.4、到达时间差测向体制
到达时间差测向体制的测向原理:依据电波在行进中,通过测量电波到达测向天线阵各个测向天线单元时间上的差别,确定电波到来的方向。它类似于比相式测向,但所测量的参数是时间差,而不是相位差。该测向体制要求被测信号具有确定的调制方式。 到达时间差测向体制的特点:测向准确度高,灵敏度高,测向速度快,极化误差不敏感,没有间距误差,测向场地环境要求低。但是抗干扰性能不好,载波必须有确定的调制,目前应用尚不普及。
2.5、空间谱估计测向体制
空间谱估计测向体制的测向原理:在已知座标的多元天线阵中,测量单元或多元电波场的来波参数,经过多信道接收机变频、放大,得到矢量信号,将其采样量化为数字信号阵列,送给空间谱估计器,运用确定的算法求出各个电波的来波方向、仰角、极化等参数。 空间谱估计测向体制的特点:空间谱估计测向技术可以实现对几个相干波同时测向;可以实现对同信道中、同时存在的多个信号,同时测向;可以实现超分辨测向;仅需要很少的信号采样,就能精确测向,因而适用于对跳频信号测向;可以实现高测向灵敏度和高测向准确度;测向场地环境要求不高,可以实现天线阵元方向特性选择及阵元位置选择的灵活性。以上空间谱估计测向的优点,正是传统测向方法长期以来存在的难题。 空间谱估计测向系统尚在研究试验阶段。在这个系统中,要求具备宽带测向天线,要求各个天线阵元之间和多信道接收机之间,电性能具有一致性。此外还需要简捷高精度的计算方法和高性能的运算处理器,以便解决实用化问题。