1、问题可以归结为三个方面:计算能力不足、认知理论未明以及精确识别与模糊特征之间的自相矛盾。
2.人才的稀缺
目前真正意义上的从业人员缺少科班出身,缺少对图像处理的底层理论认知和理解。机器视觉中图像处理是极为重要的一环,而目前大多数从业人员是本科或者大专毕业,或者是电气工程师新入行,基本都比较缺乏图像处理的基本理论,很多理论还停留在对“视觉嘛,就是、对比视觉,二值化”等认知上。
待遇。虽然相对于普通的自动化从业者而言,机器视觉工程师待遇还是不错的,但是却难以吸引到硕士或者博士进行过专门图像处理学术训练的人加入,因为随便加入那个互联网大公司做图像相关工作,待遇都能把自动化从业的工程师甩出几条大街。
另外,机器视觉更多的应用是属于自动化设备这一块。而自动化属于比较交叉的学科,涉及到机器视觉,需要了解的东西包括、电气、运动控制、机械、光学、软件编程等。这些学科了解一些基本的东西不难,但是研究的比较透彻并能GX率的综合运用就比较难了。
3.图像处理的不确定性
在我的理解机器视觉仅仅算是计算机视觉的一个微小分支,所以机器视觉主要还是指工业方面的应用。目前的工业应用主要需求有:测量、外观检测、条码、字符识别、定位。而这几个方面机器视觉还没有一个能真正意义上实现批量化检测的同时保证极高的准确率,极小的误检率和杜绝漏检。这个目标不能实现,降低了机器视觉的应用预期。因为机器视觉设备不能完全解决,还是需要人复查,除非客户的标准没有那么高。