全部评论(2条)
-
- a704565540 2009-05-10 00:00:00
- 测厚度啊 测距离啊 等等的
-
赞(1)
回复(0)
-
- 绫濑宿据 2016-12-01 21:57:52
- 迈克尔逊干涉仪,是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹。主要用于长度和折射率的测量,若观察到干涉条纹移动一条,便是M2的动臂移动量为λ/2,等效于M1与M2之间的空气膜厚度改变λ/2。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。利用该仪器的原理,研制出多种专用干涉仪。 ※特别强调: 干涉条纹是等光程差点的轨迹,因此,要分析某种干涉产生的图样,必求出相干光的光程差位置分布的函数。 若干涉条纹发生移动,一定是场点对应的光程差发生了变化,引起光程差变化的原因,可能是光线长度L发生变化,或是光路中某段介质的折射率n发生了变化,或是薄膜的厚度e发生了变化。 [编辑本段]迈克耳孙干涉仪 (英文:Michelson interferometer)是光学干涉仪中Z常见的一种,其fa明者是美国物理学家阿尔伯特·亚伯拉罕·迈克耳孙。迈克耳孙干涉仪的原理是一束入射光分为两束后各自被对应的平面镜反射回来,这两束光从而能够发生干涉。干涉中两束光的不同光程可以通过调节干涉臂长度以及改变介质的折射率来实现,从而能够形成不同的干涉图样。迈克耳孙和爱德华·威廉姆斯·莫雷使用这种干涉仪于1887年进行了的迈克耳孙-莫雷实验,并证实了以太的不存在。 [编辑本段]配置 如右图所示,在一台标准的迈克耳孙干涉仪中从光源到光检测器之间存在有两条光路:一束光被光学分束器(例如一面半透半反镜)反射后入射到上方的平面镜后反射回分束器,之后透射过分束器被光检测器接收;另一束光透射过分束器后入射到右侧的平面镜,之后反射回分束器后再次被反射到光检测器上。注意到两束光在干涉过程中穿过分束器的次数是不同的,从右侧平面镜反射的那束光只穿过一次分束器,而从上方平面镜反射的那束光要经过三次,这会导致两者光程差的变化。对于单色光的干涉而言这无所谓,因为这种差异可以通过调节干涉臂长度来补偿;但对于复色光而言由于在介质中不同色光存在色散,这往往需要在右侧平面镜的路径上加一块和分束器同样材料和厚度的补偿板,从而能够消除由这个因素导致的光程差。 在干涉过程中,如果两束光的光程差是光波长的整数倍(0,1,2……),在光检测器上得到的是相长的干涉信号;如果光程差是半波长的奇数倍(0.5,1.5,2.5……),在光检测器上得到的是相消的干涉信号。当两面平面镜严格垂直时为等倾干涉,其干涉光可以在屏幕上接收为圆环形的等倾条纹;而当两面平面镜不严格垂直时是等厚干涉,可以得到以等厚交线为ZX对称的直等厚条纹。在光波的干涉中能量被重新分布,相消干涉位置的光能量被转移到相长干涉的位置,而总能量总保持守恒。 19世纪末人们通过使用气体放电管、滤色镜、狭缝或针孔成功得到了迈克耳孙干涉仪的干涉条纹,而在一个版本的迈克耳孙-莫雷实验中采用的光源是星光。星光不具有时间相干性,但由于其从同一个点光源发出而具有足够好的空间相干性,从而可以作为迈克耳孙干涉仪的有效光源。 [编辑本段]应用 迈克耳孙干涉仪的Z应用即是它在迈克耳孙-莫雷实验中对以太风观测中所得到的零结果,这朵十九世纪末经典物理学天空中的乌云为狭义相对论的基本假设提供了实验依据。除此之外,由于激光干涉仪能够非常精确地测量干涉中的光程差,在当今的引力波探测中迈克耳孙干涉仪以及其他种类的干涉仪都得到了相当广泛的应用。激光干涉引力波天文台(LIGO)等诸多地面激光干涉引力波探测器的基本原理就是通过迈克耳孙干涉仪来测量由引力波引起的激光的光程变化,而在计划中的激光干涉空间天线(LISA)中,应用迈克耳孙干涉仪原理的基本构想也已经被提出。迈克耳孙干涉仪还被应用于寻找太阳系外行星的探测中,虽然在这种探测中马赫-曾特干涉仪的应用更加广泛。迈克耳孙干涉仪还在延迟干涉仪,即光学差分相移键控解调器(Optical DPSK)的制造中有所应用,这种解调器可以在波分复用网络中将相位调制转换成振幅调制。 [编辑本段]非线性迈克耳孙干涉仪 在所谓非线性迈克耳孙干涉仪中,标准的迈克耳孙干涉仪的其中一条干涉臂上的平面镜被替换为一个Gires-Tournois干涉仪或Gires-Tournois标准具,从Gires-Tournois标准具出射的光场和另一条干涉臂上的反射光场发生干涉。由于Gires-Tournois标准具导致的相位变化和光波长有关,并且具有阶跃的响应,非线性迈克耳孙干涉仪有很多特殊的应用,例如光纤通信中的光学梳状滤波器。另外,迈克耳孙干涉仪的两条干涉臂上的平面镜都可以被替换为Gires-Tournois标准具,此时的非线性迈克耳孙干涉仪会产生更强的非线性效应,并可以用来制造反对称的光学梳状滤波器
-
赞(16)
回复(0)
热门问答
- 迈克尔逊干涉仪在精密光学计量和检测方面的应用
2009-05-09 17:15:33
501
2
- 急,迈克尔逊干涉仪在精密光学计量和检测方面的具体应用方案?
2018-03-28 03:18:01
589
1
- 迈克尔逊干涉仪应用
- 1.对非定域干涉和定域干涉观察方法有何不同?观察等厚干涉条纹时,能否用电光源? 2.根据什么现象来判断M1//M'2? 3.如何找零光程位置? 4.什么原因形成空程?它对测量有什么影响?在测量中如何避免引入空程? 5.空气折射与压强有关,真空时折射率为1,标... 1.对非定域干涉和定域干涉观察方法有何不同?观察等厚干涉条纹时,能否用电光源? 2.根据什么现象来判断M1//M'2? 3.如何找零光程位置? 4.什么原因形成空程?它对测量有什么影响?在测量中如何避免引入空程? 5.空气折射与压强有关,真空时折射率为1,标准大气压时空气折射率n,请提出设计方案,用迈克尔逊干涉仪测定空气折射率 展开
2018-11-14 12:19:29
842
0
- 迈克尔逊干涉仪中的应用
2018-12-06 18:08:19
183
0
- 迈克尔逊干涉仪
- 迈克尔逊干涉仪除了理论上的价值,在精密光学计量和检测方面也具有许多重要的用途。谁能够提出一个具体的应用方案吗?(文字表述)
2018-04-09 11:51:07
847
1
- 迈克尔逊干涉仪
- 使用钠光,用迈克尔逊干涉仪调出等倾干涉条纹的主要步骤。 快!急用!
2008-03-15 14:06:24
557
3
- 迈克尔逊干涉仪
- 改变激光器与分束镜之间的距离,或者改变观察屏与分束镜的距离,等倾干涉条纹的级数是否发生改变,圆环状的等倾干涉条纹的各级半径呢???为什么?
2018-11-26 17:06:05
298
0
- 迈克尔逊干涉仪
- 如何用迈克尔逊干涉仪测白光相干长度
2011-06-15 13:11:06
423
1
- 迈克尔逊干涉仪在哪一些领域应用
2015-11-18 02:59:24
388
2
- 迈克尔逊干涉仪及应用实验原理
2018-12-05 00:35:47
213
0
- 迈克尔逊干涉仪能否检验精密螺杆的螺距
2009-10-13 05:09:09
273
1
- 在迈克尔逊干涉仪调节时
- 在迈克尔逊干涉仪调节时,当干涉条纹已经出现时,可能出现条纹间距很密集或者很稀疏的现象,这对于调节和计量都不利。请考虑该如何操作来改变这种情况?进而思考条纹密集和稀疏所对应的M1,M2的位置关系。
2008-11-29 00:47:31
306
1
- 迈克尔逊干涉仪 光环
- 谁能解释一下。。为什么迈克尔逊干涉仪的干涉图样是明暗相间的光环呢?!它的光程差来源是上面那个平镜的位置,那为什么在圆环的不同位置有明暗不同的显示呢?!
2010-12-06 01:59:28
454
1
- 迈克尔逊干涉仪思考题
- 1 在m1和m2垂直的情况下,用激光点光源与用钠光源照射时观察到的干涉花样其形状是相同的,二者有什么区别? 2 用激光点光源照射迈克尔逊干涉仪,并调出干涉圆环后,使m1或m2反射镜法线朝一个方向连续缓慢变化,干涉条纹有何变化?拭解释之。
2016-12-01 02:15:52
707
1
- 迈克尔逊干涉仪实验
- 1.在迈克尔逊干涉仪调节时,当干涉条纹已经出现时,可能出现条纹间距很密集或者稀疏的现象,这对于调节和计量都不利。请考虑该如何操作来改变这种情况?进而思考条纹密集和稀疏所对应的M1、M2的位置关系。 2.在迈克尔逊干涉仪的M2光路中,多了一块平板玻璃(... 1.在迈克尔逊干涉仪调节时,当干涉条纹已经出现时,可能出现条纹间距很密集或者稀疏的现象,这对于调节和计量都不利。请考虑该如何操作来改变这种情况?进而思考条纹密集和稀疏所对应的M1、M2的位置关系。 2.在迈克尔逊干涉仪的M2光路中,多了一块平板玻璃(又称为“平晶”,其两个表面的平行度要求非常高)。请考虑它的作用? 3.迈克尔逊干涉仪除了理论上的价值,在精密光学计量和检测方面也具有很多重要的用途。通过本实验,你能够提出一个具体的应用方案吗? 展开
2018-11-13 08:03:54
709
0
- 请问有谁知道精密迈克尔逊干涉仪各部分名称呀?
- 请问有谁知道精密迈克尔逊干涉仪各部分名称呀?
2018-12-04 21:00:27
322
0
- 迈克尔逊Z早用迈克尔逊干涉仪做什么
2017-11-05 05:07:33
473
1
- 迈克尔逊干涉仪思考题冒出和淹没
2015-06-16 03:49:15
401
1
- 迈克尔逊干涉仪的配置
2018-11-12 07:54:26
335
0
参与评论
登录后参与评论