开普勒(Johannes Kepler,1571--1630) 德国天文学家、占星学家、数学家。1571年12月27日生于德国斯瓦比亚地区(今西德巴伐利亚洲)的维腾堡。其父是陆军军官,母亲是旅馆老板的女儿。
1587年开普勒进入蒂宾根大学学习神学和数学,由于受到天文学教授迈克尔·马斯特林的影响而信奉哥白尼的学说。1588年开普勒获得了学士学位。1591年获得硕士学位。1594年他被委派到格拉茨市路德派高级中学任数学教师。此后他致力于天文学研究。他是毕达哥拉斯主义者,这对他的天文学研究产生很大影响。
1596年他的Z早关于宇宙论方面的著作《宇宙的秘密》出版。在这本著作中,开普勒以哥白尼学说为依据,提出了利用几何图形描述行星轨道的方法。同时指出了哥白尼的“所有行星都绕太阳作匀速圆周运动‘的说法过于粗糙。开普勒的行星轨道法是,在行星轨道之间作正多面体,他认为正好存在6颗行星(当时人们只发现了太阳系的6颗行星)和5个正多面体,因而必然存在着某种数学和谐。经过极其复杂和艰苦的运算,终于找到了所谓哥白尼体系中行星轨道之间的这种数学和谐。
他的这项工作受到了第谷的重视,1598年开普勒离开德国到了布拉格。应第谷的邀请,普勒接替了第谷的工作。他们只相处一年多,但第谷的丰富天文观测资料,为开普勒提供了可靠的行星运动轨道的研究依据。1612年开普勒被新国王辞退移居奥地利林茨担任教授,此期间他发表了,《哥白尼系统天文学摘要》,并出版了《鲁道夫星表》。1628年定居于扎尔根,1630年11月15日病逝于累根斯堡,终年59岁。
开普勒的zhuo越贡献是建立了行星运动三定律,从而奠定了近代物理学的又一重要理论基础。
1609年开普勒在《新天文学》中首先创立了“开普勒diyi和第二定律”。
diyi定律又称椭圆轨道定律,定律指出:“所有行星分别沿不同大小的椭圆轨道绕太阳运动,太阳处于椭圆的一个焦点上。”
第二定律又称面积定律,定律指出:“在行星运动时,联结行星和太阳的线,在相等的时间内,永远扫过同样大小的面积。”
1619年,开普勒又在《世界的和谐》一文中,提出了第三定律,即周期定律,这一定律是:行星公转周期的平方与它们轨道半长轴的立方成正比。这几个定律也为牛顿发现万有引力定律,提供了理论基础。
开普勒在天文观察中的又一重要贡献是,于1604年9月30日发现了一颗超新星爆发。为纪念他的这一功绩,以他的名字命名了这颗超新星。
开普勒在物理学其他方面,也有很大贡献。他是近代实验光学的奠基人之一。1611年,他发表了《折光学》一书,阐述了光的折射原理,为折射望远镜的发明奠定了基础。
开普勒对光学的贡献卓著。我们不会忘记伽利略在力学领域中的作用,也就不会忘记开普勒在光学领域中的作用。他根据光从光源以球面辐射出来的现象,提出了光度随距离减弱的平方反比律。他还对光的折射现象进行了深入研究,提出了有关的定律。他对小防成像等光学现象,从几何光学角度做了说明。
开普勒的实验光学成果具有重大价值。他对透镜和透镜组的成像问题,做了科学的探讨,Z早采用了作图的方法,为光学问题的研究,提供了新的手段。在此基础上,他设计了多种望远镜,如利用两块凸透镜的望远镜等。开普勒还Z早从光学角度成功地研究了人的视觉问题,开创了研究视觉理论的正确道路。他否定了前人认为视觉是由眼睛发射出光的错误观点,提出了物体的光通过眼睛的水晶体,在视网膜上成像的观点。进而,他对近视眼和远视眼的问题,也给予了很好的解释。
开普勒对数学的研究也很有造诣。他是实验与理论紧密结合的科学家。