显微镜的基本光学原理 \x0d \x0d (一)折射和折射率 \x0d \x0d 光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现象,这是由于光在不同介质的传播速度不同造成的.当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角. \x0d \x0d (二)透镜的性能 \x0d \x0d 透镜是组成显微镜光学系统的Z基本的光学元件,物镜目镜及聚光镜等部件均由单个和多个透镜组成.依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类. \x0d \x0d 当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称"焦点",通过交点并垂直光轴的平面,称"焦平面".焦点有两个,在物方空间的焦点,称"物方焦点",该处的焦平面,称"物方焦平面";反之,在象方空间的焦点,称"象方焦点",该处的焦平面,称"象方焦平面". \x0d \x0d 光线通过凹透镜后,成正立虚像,而凸透镜则成正立实像.实像可在屏幕上显现出来,而虚像不能. \x0d \x0d (三)凸透镜的五种成象规律 \x0d \x0d 1.当物体位于透镜物方二倍焦距以外时,则在象方二倍焦距以内、焦点以外形成缩小的倒立实象; \x0d \x0d 2.当物体位于透镜物方二倍焦距上时,则在象方二倍焦距上形成同样大小的倒立实象; \x0d \x0d 3.当物体位于透镜物方二倍焦距以内,焦点以外时,则在象方二倍焦距以外形成放大的倒立实象; \x0d \x0d 4.当物体位于透镜物方焦点上时,则象方不能成象; \x0d \x0d 5.当物体位于透镜物方焦点以内时,则象方也无象的形成,而在透镜物方的同侧比物体远的位置形成放大的直立虚象. \x0d 三、光学显微镜的成象(几何成象)原理 \x0d \x0d 只有当物体对人眼的张角不小于某一值时,肉眼才能区别其各个细部,该量称为目视分辨率ε.在Z佳条件下,即物体的照度为50~70lx及其对比度较大时,可达到1’.为易于观测,一般将该量加大到2’,并取此为平均目镜分辨率. \x0d \x0d 物体视角的大小与该物体的长度尺寸和物体至眼睛的距离有关.有公式y=Lε \x0d \x0d 距离L不能取得很小,因为眼睛的调节能力有一定限度,尤其是眼睛在接近调节能力的极限范围工作时,会使视力极度疲劳.对于标准(正视)而言,Z佳的视距规定为250mm(明视距离).这意味着,在没有仪器的条件下,目视分辨率ε=2’的眼睛,能清楚地区分大小为0.15mm的物体细节. \x0d \x0d 在观测视角小于1’的物体时,必须使用放大仪器.放大镜和显微镜是用于观测放置在观测人员近处应予放大的物体的. \x0d \x0d (一)放大镜的成像原理 \x0d \x0d 表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光路图如图1所示.位于物方焦点F以内的物AB,其大小为y,它被放大镜成一大小为y’的虚像A’B’. \x0d \x0d 放大镜的放大率 \x0d \x0d Γ=250/f’ \x0d \x0d 式中250--明视距离,单位为mm \x0d \x0d f’--放大镜焦距,单位为mm \x0d \x0d 该放大率是指在250mm的距离内用放大镜观察到的物体像的视角同没有放大镜观察到的物体视角的比值. \x0d \x0d (二)显微镜的成像原理 \x0d \x0d 显微镜和放大镜起着同样的作用,就是把近处的微小物体成一放大的像,以供人眼观察.只是显微镜比放大镜可以具有更高的放大率而已. \x0d \x0d 图2是物体被显微镜成像的原理图.图中为方便计,把物镜L1和目镜L2均以单块透镜表示.物体AB位于物镜前方,离开物镜的距离大于物镜的焦距,但小于两倍物镜焦距.所以,它经物镜以后,必然形成一个倒立的放大的实像A’B’.A’B’位于目镜的物方焦点F2上,或者在很*近F2的位置上.再经目镜放大为虚像A’’B’’后供眼睛观察.虚像A’’B’’的位置取决于F2和A’B’之间的距离,可以在无限远处(当A’B’位于F2上时),也可以在观察者的明视距离处(当A’B’在图中焦点F2之右边时).目镜的作用与放大镜一样.所不同的只是眼睛通过目镜所看到的不是物体本身,而是物体被物镜所成的已经放大了一次的像. \x0d \x0d (三)显微镜的重要光学技术参数 \x0d \x0d 在镜检时,人们总是希望能清晰而明亮的理想图象,这就需要显微镜的各项光学技术参数达到一定的标准,并且要求在使用时,必须根据镜检的目的和实际情况来协调各参数的关系.只有这样,才能充分发挥显微镜应有的性能,得到满意的镜检效果. \x0d \x0d 显微镜的光学技术参数包括:数值孔径、分辨率、放大率、焦深、视场宽度、覆盖差、工作距离等等.这些参数并不都是越高越好,它们之间是相互联系又相互制约的,在使用时,应根据镜检的目的和实际情况来协调参数间的关系,但应以保证分辨率为准. \x0d \x0d 1.数值孔径 \x0d \x0d 数值孔径简写NA,数值孔径是物镜和聚光镜的主要技术参数,是判断两者(尤其对物镜而言)性能高低的重要标志.其数值的大小,分别标刻在物镜和聚光镜的外壳上. \x0d \x0d 数值孔径(NA)是物镜前透镜与被检物体之间介质的折射率(n)和孔径角(u)半数的正弦之乘积.用公式表示如下:NA=nsinu/2 \x0d \x0d 孔径角又称"镜口角",是物镜光轴上的物体点与物镜前透镜的有效直径所形成的角度.孔径角越大,进入物镜的光通亮就越大,它与物镜的有效直径成正比,与焦点的距离成反比. \x0d \x0d 显微镜观察时,若想增大NA值,孔径角是无法增大的,唯yi的办法是增大介质的折射率n值.基于这一原理,就产生了水浸物镜和油浸物镜,因介质的折射率n值大于1,NA值就能大于1. \x0d \x0d 数值孔径Z大值为1.4,这个数值在理论上和技术上都达到了极限.目前,有用折射率高的溴萘作介质,溴萘的折射率为1.66,所以NA值可大于1.4. \x0d \x0d 这里必须指出,为了充分发挥物镜数值孔径的作用,在观察时,聚光镜的NA值应等于或略大于物镜的NA值. \x0d \x0d 数值孔径与其他技术参数有着密切的关系,它几乎决定和影响着其他各项技术参数.它与分辨率成正比,与放大率成正比,与焦深成反比,NA值增大,视场宽度与工作距离都会相应地变小. \x0d \x0d 2.分辨率 \x0d \x0d 显微镜的分辨率是指能被显微镜清晰区分的两个物点的Z小间距,又称"鉴别率".其计算公式是σ=λ/NA \x0d \x0d 式中σ为Z小分辨距离;λ为光线的波长;NA为物镜的数值孔径.可见物镜的分辨率是由物镜的NA值与照明光源的波长两个因素决定.NA值越大,照明光线波长越短,则σ值越小,分辨率就越高. \x0d \x0d 要提高分辨率,即减小σ值,可采取以下措施 \x0d \x0d (1)降低波长λ值,使用短波长光源. \x0d \x0d (2)增大介质n值以提高NA值(NA=nsinu/2). \x0d \x0d (3)增大孔径角u值以提高NA值. \x0d \x0d (4)增加明暗反差. \x0d \x0d 3.放大率和有效放大率 \x0d \x0d 由于经过物镜和目镜的两次放大,所以显微镜总的放大率Γ应该是物镜放大率β和目镜放大率Γ1的乘积: \x0d \x0d Γ=βΓ1 \x0d \x0d 显然,和放大镜相比,显微镜可以具有高得多的放大率,并且通过调换不同放大率的物镜和目镜,能够方便地改变显微镜的放大率. \x0d \x0d 放大率也是显微镜的重要参数,但也不能盲目相信放大率越高越好.显微镜放大倍率的极限即有效放大倍率. \x0d \x0d 分辨率和放大倍率是两个不同的但又互有联系的概念.有关系式:500NA<Γ<1000NA \x0d \x0d 当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率.反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见.所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配. \x0d \x0d 4.焦深 \x0d \x0d 焦深为焦点深度的简称,即在使用显微镜时,当焦点对准某一物体时,不仅位于该点平面上的各点都可以看清楚,而且在此平面的上下一定厚度内,也能看得清楚,这个清楚部分的厚度就是焦深.焦深大,可以看到被检物体的全层,而焦深小,则只能看到被检物体的一薄层,焦深与其他技术参数有以下关系: \x0d \x0d (1)焦深与总放大倍数及物镜的数值孔径成反比. \x0d \x0d (2)焦深大,分辨率降低. \x0d \x0d 由于低倍物镜的景深较大,所以在低倍物镜照相时造成困难.在显微照相时将详细介绍. \x0d \x0d 5.视场直径(FieldOfView) \x0d \x0d 观察显微镜时,所看到的明亮的圆形范围叫视场,它的大小是由目镜里的视场光阑决定的. \x0d \x0d 视场直径也称视场宽度,是指在显微镜下看到的圆形视场内所能容纳被检物体的实际范围.视场直径愈大,愈便于观察. \x0d \x0d 有公式F=FN/β \x0d \x0d 式中F:视场直径,FN:视场数(FieldNumber,简写为FN,标刻在目镜的镜筒外侧),β:物镜放大率. \x0d \x0d 由公式可看出: \x0d \x0d (1)视场直径与视场数成正比. \x0d \x0d (2)增大物镜的倍数,则视场直径减小.因此,若在低倍镜下可以看到被检物体的全貌,而换成高倍物镜,就只能看到被检物体的很小一部份. \x0d \x0d 6.覆盖差 \x0d \x0d 显微镜的光学系统也包括盖玻片在内.由于盖玻片的厚度不标准,光线从盖玻片进入空气产生折射后的光路发生了改变,从而产生了相差,这就是覆盖差.覆盖差的产生影响了显微镜的成响质量. \x0d \x0d 国际上规定,盖玻片的标准厚度为0.17mm,许可范围在0.16-0.18mm,在物镜的制造上已将此厚度范围的相差计算在内.物镜外壳上标的0.17,即表明该物镜所要求的盖玻片的厚度. \x0d \x0d 7.工作距离WD \x0d \x0d 工作距离也叫物距,即指物镜前透镜的表面到被检物体之间的距离.镜检时,被检物体应处在物镜的一倍至二倍焦距之间.因此,它与焦距是两个概念,平时习惯所说的调焦,实际上是调节工作距离. \x0d \x0d 在物镜数值孔径一定的情况下,工作距离短孔径角则大. \x0d \x0d 数值孔径大的高倍物镜,其工作距离小. \x0d \x0d (四)物镜 \x0d \x0d 物镜是显微镜Z重要的光学部件,利用光线使被检物体diyi次成象,因而直接关系和影响成象的质量和各项光学技术参数,是衡量一台显微镜质量的首要标准. \x0d \x0d 物镜的结构复杂,制作精密,由于对象差的校正,金属的物镜筒内由相隔一定距离并被固定的透镜组组合而成.物镜有许多具体的要求,如合轴,齐焦. \x0d \x0d 齐焦既是在镜检时,当用某一倍率的物镜观察图象清晰后,在转换另一倍率的物镜时,其成象亦应基本清晰,而且象的ZX偏离也应该在一定的范围内,也就是合轴程度.齐焦性能的优劣和合轴程度的高低是显微镜质量的一个重要标志,它是与物镜的本身质量和物镜转换器的精度有关. \x0d \x0d 现代显微物镜已达到高度完善,其数值孔径已接近极限,视场ZX的分辨率与理论值之区别已微乎其微.但继续增大显微物镜视场与提高视场边缘成象质量的可能性仍然存在,这种研究工作,至今仍在进行. \x0d \x0d 显微物镜与目镜在参于成象这点上是有区别的.物镜是显微镜Z复杂和Z重要的部分,在宽光束中工作(孔径大),但这些光束与光轴的倾角较小(视场小);目镜在窄光束中工作,但其倾角大(视场大).当计算物镜与目镜,在消除象差上有很大差别. \x0d \x0d 与宽光束有关的象差是球差、慧差以及位置色差;与视场有关的象差是象散、场曲、畸变以及倍率包差. \x0d \x0d 显微物镜是一消球差系统.这意味着:就轴上的一对共轭点而言,消除了球差并且实现了正弦条件时,每一物镜仅有两个这种消球差点.因此,物体与象的计算位置的任何改变均导致象差变大. \x0d \x0d 1.物镜的主要参数 \x0d \x0d (1)放大率β \x0d \x0d (2)数值孔径NA \x0d \x0d (3)机械筒长L:在显微镜中,物镜支承面到目镜支承面之间的距离称为机械筒长.对于一台显微镜来说,机械筒长是固定的.我国规定机械筒长是160毫米. \x0d \x0d (4)盖玻片厚度d \x0d \x0d (5)工作距离WD \x0d \x0d 这些参数,大多刻在物镜筒上,如图3所示. \x0d \x0d 有一种所谓筒长无限的显微物镜,这种物镜的后方一般带有辅助物镜(也叫补偿物镜或镜筒物镜),被观察物体位于物镜前焦点上,经过物镜以后,成像在无限远,再经过辅助物镜成像在辅助物镜的焦平面上,如图4所示.在物镜和辅助物镜之间是平行光,所以中间距离比较自由一些,可以加入棱镜等光学元件. \x0d \x0d 2.物镜的基本类型 \x0d \x0d (1)按显微镜镜筒长度(以mm计):透射光用160镜筒,带0.17mm厚或更厚的盖玻片;反射光用190镜筒,不带盖玻片;透射光与反射光用镜筒,筒长无限大. \x0d \x0d (2)按浸法特征:非浸式(干式)、浸式(油浸、水浸、甘油浸及其它浸法). \x0d \x0d (3)按光学装置:透射式、反射式以及折反射式. \x0d \x0d (4)按数值孔径和放大倍数:低倍(NA≤0.2与β≤10X),中倍(NA≤0.65与β≤40X),高倍(NA>0.65与β>40X). \x0d \x0d (5)按校正象差的情况不同,通常分为消色差物镜,半复消色差物镜,复消色差物镜,平视场消色差物镜,平视场复消色差物镜和单色物镜. \x0d \x0d a.消色差物镜(Achromaticobjective) \x0d \x0d 这是应用Z广泛的一类显微物镜,外壳上常有"Ach"字样.它校正了轴上点的位置色差(红,蓝二色)、球差(黄绿光)和正弦差,保持了齐明条件.轴外点的象散不超过允许值(-4属光度),二级光谱未校正. \x0d \x0d 数值孔径为0.1~0.15的低倍消色差物镜一般由两片透镜胶合在一起的双胶物镜构成.数值孔径至0.2的消色差物镜由两组双胶透镜构成.当数值孔径增大到0.3时,再加入一平凸透镜,该平凸透镜决定着物镜的焦距,而其它透镜则补偿由其平面与球面产生的象差.高倍物镜的平面象差可用浸法消除.高倍消色差物镜一般均为浸式,由四部分构成:前片透镜、新月形透镜及两个双胶透镜组. \x0d \x0d b.复消色差物镜(Apochromaticobjective) \x0d \x0d 这类物镜的结构复杂,透镜采用了特种玻璃或萤石等材料制作而成,物镜的外壳上标有"Apo"字样.它对两个色光实现了正弦条件,要求严格地校正轴上点的位置色差(红,蓝二色)、球差(红,蓝二色)和正弦差,同时要求校正二级光谱(再校正绿光的位置色差).其倍率色差并不能完全校正,一般须用目镜补偿. \x0d \x0d 由于对各种象差的校正极为完善,比响应倍率的消色差物镜有更大的数值孔径,这样不仅分辨率高,象质量优而且也有更高的有效放大率.因此,复消色差物镜的性能很高,适用于高级研究镜检和显微照相. \x0d \x0d c.半复消色差物镜(Semiapochromaticobjective) \x0d \x0d 半复消色差物镜又称氟石物镜,物镜的外壳上标有"FL"字样.在结构上透镜的数目比消色差物镜多,比复消色差物镜少,成象质量上,远较消色差物镜为好,接近于复消色差物镜. \x0d \x0d d.平视场物镜(Planobjective) \x0d \x0d 平场物镜是在物镜的透镜系统中增加一快半月形的厚透镜,以达到校正场曲的缺陷,提高视场边缘成像质量的目的.平场物镜的视场平坦,更适用于镜检和显微照相.对于平视场消色差物镜,其倍率色差不大,不必用特殊目镜补偿.而平视场复消色差物镜,则必须用目镜来补偿它的倍率色差. \x0d \x0d e.单色物镜 \x0d \x0d 这类物镜由石英、荧石或氟化锂制的一组单片透镜构成.只能在紫外线光谱区的个别区内使用(宽度不超过20mm),可见光谱区不能采用单色物镜.这类物镜均制成反射式与折反射式系统.主要缺点是相当大一部分光束在ZX被遮蔽(入瞳面积的25%).在新型折反射系统中,由于采用半透明反射镜以及物镜的胶合结构,使这一缺点大为减轻,从而可以取消反射镜框的遮光.并且两同轴反射镜的残余象差是互相补偿的,同时用透镜组来增大数值孔径.若系统的校正满意,孔径达到NA=1.4时,ZX遮蔽可不超过入瞳面积的4%. \x0d \x0d f.特种物镜 \x0d \x0d 所谓"特种物镜"是在上述物镜的基础上,专门为达到某些特定的观察效果而设计制造的.主要有以下几种: \x0d \x0d (a)带校正环物镜(Correctioncollarobjective) \x0d \x0d 在物镜的中部装有环装的调节环,当转动调节环时,可调节物镜内透镜组之间的距离,从而校正由盖玻片厚度不标准引起的覆盖差.调节环上的刻度可从0.11--.023,在物镜的外壳上也标科有此数字,表明可校正盖玻片从0.11-0.23mm厚度之间的误差.