络合物
络合物
络合物之一
络合物通常指含有络离子的化合物,例如络盐[Ag(NH3)2]Cl、络酸H2[PtCl6]、络碱[Cu(NH3)4](OH)2等;也指不带电荷的络合分子,例如[Fe(SCN)3]、[Co(NH3)3Cl3]等。配合物又称络合物。
络合物的组成以[Cu(NH3)4]SO4为例说明如下:
(1)络合物的形成体,常见的是过渡元素的阳离子,如Fe3+、Fe2+、Cu2+、Ag+、Pt2+等。
(2)配位体可以是分子,如NH3、H2O等,也可以是阴离子,如CN-、SCN-、F-、Cl-等。
(3)配位数是直接同ZX离子(或原子)络合的配位体的数目,Z常见的配位数是6和4。
络离子是由ZX离子同配位体以配位键结合而成的,是具有一定稳定性的复杂离子。在形成配位键时,ZX离子提供空轨道,配位体提供孤对电子。
络离子比较稳定,但在水溶液中也存在着电离平衡,例如:
[Cu(NH3)4]2+Cu2++4NH3
因此在[Cu(NH3)4]SO4溶液中,通入H2S时,由于生成CuS(极难溶)
络合物之二
含有络离子的化合物属于络合物。
我们早已知道,白色的无水硫酸铜溶于水时形成蓝色溶液,这是因为生成了铜的水合离子。铜的水合离子组成为[Cu(H2O)4]2+,它就是一种络离子。胆矾CuSO4·5H2O就是一种络合物,其组成也可写为[Cu(H2O)4]SO4·H2O,它是由四水合铜(Ⅱ)离子跟一水硫酸根离子结合而成。在硫酸铜溶液里加入过量的氨水,溶液由蓝色转变为深蓝。这是因为四水合铜(Ⅱ)离子经过反应,Z后生成一种更稳定的铜氨络离子[Cu(NH3)4]2+而使溶液呈深蓝色。如果将此铜氨溶液浓缩结晶,可得到深蓝色晶体[Cu(NH3)4]SO4,它叫硫酸四氨合铜(Ⅱ)或硫酸铜氨,它也是一种络合物。
又如,铁的重要络合物有六氰合铁络合物:亚铁
K4[Fe(CN)6](俗名黄血盐)和铁K3[Fe(CN)6](俗名赤血盐)。这些络合物分别含的六氰合铁(Ⅱ)酸根[Fe(CN)6]4-络离子和六氰合铁(Ⅲ)酸根[Fe(CN)6]3-络离子,它们是由CN-离子分别跟Fe2+和Fe3+络合而成的。
由以上例子可见:络离子是由一种离子跟一种分子,或由两种不同离子所形成的一类复杂离子。
络合物一般由内界(络离子)和外界两部分组成。内界由ZX离子(如Fe2+、Fe3+、Cu2+、Ag+等)作核心跟配位体(如H2O、NH3、CN-SCN-、Cl-等)结合在一起构成。一个ZX离子结合的配位体的总数称为ZX离子的配位数。络离子所带电荷是ZX离子的电荷数和配位体的电荷数的代
以[Cu(NH3)4]SO4为例,用图示表示络合物的组成如下:
络合物的化学键:络合物中的络离子和外界离子之间是以离子键结合的;在内界的ZX离子和配位体之间以配位键结合。组成络合物的外界离子、ZX离子和配位体离子电荷的代数和必定等于零,络合物呈电中性
、络合物
【络合物】又称配位化合物。凡是由两个或两个以上含有孤对电子(或π键)的分子或离子作配位体,与具有空的价电子轨道的ZX原子或离子结合而成的结构单元称络合单元,带有电荷的络合单元称络离子。电中性的络合单元或络离子与相反电荷的离子组成的化合物都称为络合物。习惯上有时也把络离子称为络合物。随着络合化学的不断发展,络合物的范围也不断扩大,把NH+4、SO24-、MnO-4等也列入络合物的范围,这可称作广义的络合物。一般情况下,络合物可分为以下几类:(1)单核络合物,在1个ZX离子(或原子)周围有规律地分布着一定数量的配位体,如硫酸四氨合铜[Cu(NH3)4]SO4、六氰合铁(Ⅱ)酸钾K4[Fe(CN)6]、四羧基镍Ni(CO)4等,这种络合物一般无环状结构。(2)螯合物(又称内络合物),由ZX离子(或原子)和多齿配位体络合形成具有环状结构的络合物,如二氨基乙酸合铜:
螯合物中一般以五元环或六元环为稳定。(3)其它特殊络合物,主要有:多核络合物(含两个或两个以上的ZX离子或原子),多酸型络合物,分子氮络合物,π-酸配位体络合物,π-络合物等。
【配位化合物】见络合物条。
【ZX离子】在络合单元中,金属离子位于络离子的几何ZX,称ZX离子(有的络合单元中也可以是金属原子)。如[Cu(NH3)4]2+络离子中的Cu2+离子,[Fe(CN)6]4-络离子中的Fe2+离子,Ni(CO)4中的Ni原子等。价键理论认为,ZX离子(或原子)与配位体以配位键形成络合单元时,ZX离子(或原子)提供空轨道,是电子对的接受体。
【配位体】跟具有空的价电子轨道的ZX离子或原子相结合的离子或分子。一般配位体是含有孤对电子的离子或分子,如Cl-、CN-、NH3、H2O等;如果一个配位体含有两个或两个以上的能提供孤对电子的原子,这种配位体称作多齿配位体或多基配位体,如乙二胺:
H2N—CH2—CH2—NH2,三乙烯四胺:H2N—C2H4—NH—C2H4—NH—C2H4—NH2
等。此外,有些含有π键的烯烃、炔烃和芳香烃分子,也可作为配位体,称π键配位体,它们是以π键电子与金属离子络合的。
【络离子】见络合物条。
【内界】在络合物中,ZX离子和配位体组成络合物的内界,通常写在化学式的[ 〕内加以标示,如:
【外界】络合物内界以外的组成部分称外界。如[Cu(NH3)4]SO4中的SO24-离子。外界离子可以是阳离子,也可以是阴离子,但所带电荷跟内界络离子相反。在络合物中外界离子与内界络离子电荷的代数和为零。
【配位数】在络合单元中,一个ZX离子(或原子)所能结合的配位体的配位原子的总数,就是ZX离子(或原子)的配位数。如[Fe(CN)6]4-中,Fe2+是ZX离子,其配位数为4,二氨基乙酸合铜(见络合物)中Cu2+是ZX离子,它虽然与两个二氨基乙酸离子络合,但是直接同它络合的共有4个原子(2个N原子,2个O原子),因此C2+的配位数也是4。
【配位原子】配位体中具有孤对电子并与ZX离子(或原子)直接相连的原子。
【单齿配位体】又称单基配位体,是仅以一个配键(即孤电子对)与ZX离子或原子结合的配位体。如[Ag(NH3)2]+中的NH3分子,〔Hgl4]2-中的I-离子,[Cu(H2O)4]2+中的H2O分子等。
【单基配位体】见单齿配位体条。
【多齿配位体】又称多基配位体,若一个配位体含有两个或两个以上的能提供孤电子对的原子,这种配位体就叫多齿配位体。如乙二胺H2CH2—CH2—H2,乙二胺四乙酸酸根离子(EDTA):
【多基配位体】见多齿配位体条。
【螯合物】见络合物条。
【螯环】螯合物中所形成的环状结构。一般以五元环和六元环为稳定。
【螯合剂】能够提供多齿配位体和ZX离子形成螯合物的物质。
【螯合效应】对同一种原子,若形成螯合物比单基配位体形成的络合物(非螯合物)要更加稳定,这种效应称作螯合效应。螯合物一般以五元环、六元环为Z稳定,且一个络合剂与ZX离子所形成的螯环的数目越多就越稳定。以铜离子Cu2+和氨分子及胺类形成的络合物为例:
【内轨型络合物】价键理论认为ZX离子(或原子)和配位体以配位键结合,ZX离子(或原子)则以杂化轨道参与形成配位键。若ZX离子(或原子)以(n—1)d、ns、np轨道组成杂化轨道与配位体的孤对电子成键而形成的络合物叫内轨型络合物。如〔Fe(CN)6]4-离子中Fe2+以d2sp3杂化轨道与CN-成键;[Ni(CN)4]2-离子中Ni2+以dsp2杂化轨道与CN-成键。内轨型络合物的特点是:ZX离子(或原子)的电子层结构发生了变化,没有或很少有末成对电子,因轨道能量较低,所以一般内轨型络离子的稳定性较强。
【外轨型络合物】若ZX离子(或原子)以ns、np、nd轨道组成杂化轨道与配位体的孤对电子成键而形成的络合物叫外轨型络合物。如[FeF6]3-离子中Fe3+以sp3d2杂化轨道与F-成键;[Ni(H2O)6〕2+离子中Ni2+以sp3d2杂化轨道与H2O成键。有的资料把ZX离子以ns、np轨道组成的杂化轨道和配位体成键形成的络合物也称作外轨型络合物,如[Zn(NH3)4]2+离子中,Zn2+以sp3杂化轨道与NH3成键。外轨型络合物的特点是:ZX离子(或原子)电子层结构无变化,未成对电子数较多,因轨道能量较高,所以一般外轨型络合物的稳定性较差。
【低自旋络合物】含有较少的未成对电子的络合物,一般是内轨型络合物。这种络合物的ZX离子的未成对电子数目,一般比络合前有所减少,如〔Fe(CN)6]3-中,Fe3+离子在未络合前3d亚层有5个未成对电子:
而在此络离子中Fe3+离子的3d亚层上只有1个未成对电子:
【高自旋络合物】含有较多的未成对电子的络合物,一般是外轨型络合物。这种络合物的ZX离子的未成对电子数目,在络合前后一般保持不变。如[FeF6]3-络离子中Fe3+离子仍含有5个不成对电子。
【络合平衡】溶液中存在的络离子(或络合分子)的生成与离解之间的平衡状态。例如:
当络离子的生成与离解达到平衡状态时,虽然两个相反过程还在进行,但它们的浓度不再改变。
【稳定常数】络合平衡的平衡常数。通常指络合物的累积稳定常数,用K稳表示。例如:
对具有相同配位体数目的同类型络合物来说,K稳值愈大,络合物愈稳定。
【逐级稳定常数】络合物的生成一般是分步进行的。对应于这些平衡也有一系列的稳定常数,每一步的稳定常数就是逐级稳定常数。例如,[Cu(NH3)4]2+的生成(或解离)分四步:
K1、K2、K3、K4就是[Cu(NH3)4]2+的逐级稳定常数,逐级稳定常数的乘积就是累积稳定常数。
K稳=K1·K2·K3·K4
lgK稳=lgK1+lgK2+lgK3+lgK4
【不稳定常数】络合物的不稳定常数用K不稳表示,与稳定常数成倒数
对具有相同数目配位体的同类型络合物来说,K不稳愈大,络合物愈易离解,即愈不稳定。
【络酸】外界离子是氢离子,在溶液中能电离产生氢离子而显酸性的络合物。如氯铂酸即六氯合铂(Ⅳ)酸H2[PtCl6]:
H2[PtCl6]→2H++[PtCl6]2-
【络碱】外界离子是氢氧离子OH-,在溶液中能电离产生OH-而显碱性的络合物。如氢氧化四氨合铜(Ⅱ)[Cu(NH3)4](OH)2:
[Cu(NH3)4](OH)2→[Cu(NH3)4]2++2OH-
【络盐】又称错盐,指含有络离子的盐类。例如K4[Fe(CN)6]、[Ag(NH3)2]Cl、[Cu(NH3)4]SO4等。络盐中的络离子,在溶液中较稳定,很难离解,这是络盐和复盐的重要区别。
【错盐】见络盐条。
【维尔钠配位理论】1893年由瑞士化学家维尔纳(Wer-ner)提出。其要点是:(1)一些金属的化合价除主价外,还可以有副价。例如在CoCl3·4NH3中,钴的主价为3,副价为4,即三个氯离子满足了钴的主价,钴与氨分子的结合使用了副价。(2)络合物分为“内界”和“外界”,内界由ZX离子与周围的配位体紧密结合,而外界与内界较易解离。例如CoCl3·4NH3可写成[Co(NH3)4Cl2]Cl,内界是[Co(NH3)4Cl2]+,外界是Cl-。(3)副价也指向空间的确定方向。维尔纳的配位理论解释了大量的实验事实,但对“副价”的本质未能给以明确的解释。
【络合物的价键理论】络合物的化学键理论之一。其要点如下:(1)ZX离子(或原子)提供空轨道,配位体提供孤对电子,以配位键结合。(2)ZX离子(或原子)参与成键的空轨道都是杂化轨道,具有一定的饱和性和方向性。(3)ZX离子(或原子)提供杂化轨道接受配位体的孤对电子形成配位键时,由于采用的能级轨道不同,形成的络合物分为外轨型和内轨型。若ZX离子(或原子)以ns、np、nd轨道组成杂化轨道和配位原子形成配位键时,就叫外轨型络合物,如[FeF6]3-;ZX离子(或原子)以(n-1)d、ns、np轨道组成杂化轨道和配位原子形成配位键时,则叫内轨型络合物,如[Fe(CN)6]4-。
【络合物的晶体场理论】络合物的化学键理论之一。是1923~1935年由培特(H.Bethe)和冯弗莱克(J.H.Van Vleck)提出了晶体场理论(CFT),本世纪50年代晶体场理论又发展成配位场理论(LFT)。晶体场理论的基本观点是:认为ZX离子和配位体之间的相互作用是静电作用。它的要点如下:(1)ZX离子原来简并的d轨道在配位体电场的作用下,发生了能级分裂,有的能量升高,有的能量降低。分裂后,Z高能量d轨道和Z低能量d轨道之间的能量差叫分裂能。ZX离子的d轨道能量在正八面体场中的分裂如下图所示:
ZX离子的d轨道能量在正四面体场中的分裂如下图所示:
(2)分裂能Δ值的大小,主要受配位体的电场、ZX离子的电荷及它属于第几过渡系等因素的影响。(3)使本来是自旋平行分占两个轨道的电子挤到同一轨道上去必会使能量升高,这的能量称为成对能,用Ep表示。在弱配位场中Δ<Ep,d电子尽可能占据较多的轨道且自旋平行,形成高自旋络合物;在强配位场中Δ>Ep,d电子尽可能占据能量较低的轨道形成低自旋络合物。
【晶体场稳定化能】在晶体场理论中将d电子从未分裂的d轨道进入分裂的d轨道所产生的总能量的下降值,称为晶体场稳定化能(CFSE)。总能量下降愈多,即CFSE愈大(负值值愈大),络合物就愈稳定。
【络合物的分子轨道理论】络合物的化学键理论之一。化学键的分子轨道理论的基本观点,在这里都是完全适用的。分析ZX离子(原子)和配位体组成分子轨道,通常按下列步骤进行:(1)找出ZX离子(原子)和配位体的价电子轨道,按所组成的分子轨道是σ轨道还是π轨道分组,分别称为σ轨道和π轨道。(2)将配位体中的σ轨道和π轨道分别重新组合成若干新轨道,这些新轨道称为群轨道,使得这些群轨道的对称性分别与ZX离子(原子)的各原子轨道相匹配。(3)将对称性相同的ZX离子(原子)的原子轨道和配位体的群轨道组合成分子轨道。络合物的分子轨道理论可以得到和晶体场理论一致的结果,同时又能解释光谱化学系列、有机烯络合物的形成、羰基络合物的稳定性等方面的问题。
螯合物
螯合物是配合物的一种,在螯合物的结构中,一定有一个或多个多齿配体提供多对电子与ZX体形成配位键。“螯”指螃蟹的大钳,此名称比喻多齿配体像螃蟹一样用两只大钳紧紧夹住ZX体。
螯合物通常比一般配合物要稳定,其结构中经常具有的五或六元环结构更增强了稳定性。正因为这样,螯合物的稳定常数都非常高,许多螯合反应都是定量进行的,可以用来滴定。使用螯合物还可以掩蔽金属离子。
可形成螯合物的配体叫螯合剂。常见的螯合剂如下:
乙二胺(en),二齿
2,2'-联吡啶(bipy),二齿
1,10-二氮菲(phen),二齿
草酸根(ox),二齿
乙二胺四乙酸(EDTA),六齿
值得一提的是EDTA (ethylenediaminetetracetic acid),它能提供2个氮原子和4个羧基氧原子与金属配合,可以用1个分子把需要6配位的钙离子紧紧包裹起来,生成极稳定的产物。其化学结构表示如下:
(HOOCCH2)2NCH2CH2N(CH2COOH)2 (下标)
螯合物在工业中用来除去金属杂质,如水的软化、去除有毒的重金属离子等。一些生命必须的物质是螯合物,如血红蛋白和叶绿素中卟啉环上的4个氮原子把金属原子(血红蛋白含Fe3+,叶绿素含Mg2+)固定在环ZX。