仪器资讯

如何成功地检测和缓解:藻华以及具有味道/气味的化合物(上篇)

厂商动态 2022-12-05

640 (5).png

挥发性和半挥发性有机化合物是通常是表层水域的味道和气味(T&O)事件的代表性化学物质类别。它们是藻类和蓝藻在有害藻华(HABs)期间产生的代谢物;它们也可以由其他类型的细菌、一些植物以及在有机物质分解过程中产生的物质。(Pepper et al. 2015)。


T&O问题不被认为对人类健康有风险,但它们有时可以作为青藻细菌数量足以产生毒素事件的指标。在许多城市都会出现饮用水的审美质量问题,消费者往往错误地将T&O作为饮用水安全的衡量标准。T&O事件对供水系统来说可能是一个代价高昂的麻烦。T&O化合物的分析检测可能很困难,因为它们的化学成分不同,需要不同的采样技术和水源水管理,以及方法的主观性(Nollet & De Gelder 2014)。


T&O事件可以在几小时内为供水系统制造一场公关噩梦,因此对于经常出现问题的系统,主动处理客户投诉是非常重要的(Burlingame 1999)。适当地对投诉进行分类可以改善公用事业的反应,系统地对投诉进行分组可以建立季节性水质变化的记录(Dietrich & Burlingame 2021年)。应记录客户联系信息,以及有关投诉、问题持续时间、发生地点和有助于投诉调查和确定的任何其他因素的信息(Dietrich, 2006)。积极解决T&O问题,减少投诉数量,建立消费者的信心。


HABs是某种程度生态系统不平衡的标志,是藻类和蓝藻利用环境的顽强能力的例证。水华通常发生在富有营养的系统中,但它们很难预测,因为水华和非水华期间的环境条件可能相似。光照、温度、溶解氧、营养负荷等(Dodds & Whiles 2010)。目前还没有针对特定类群产生的化合物的完整目录,因此很难将单个T&O化合物与单个类群联系起来。


Suffet等人(1995)根据T&O的味道、气味和化学结构对许多常见的T&O化合物进行了识别和分类,然后建立在标准方法(2017)中。动态变量使水系统依赖单一分析来管理T&O问题变得不切实际和无效(Buerkens等人,2020年)。主动监测可以节省时间和工作,同时加快对受影响客户的恢复,增强可信度和系统可靠性(Chowdhury 2021年)。


为了面对在地表水和饮用水中检测和减少T&O化合物的复杂性所带来的挑战,德克萨斯州威奇托瀑布市柏树环境实验室(Wichita Falls Cypress City environment Laboratory)制定了一项监测计划,该计划融合了来自其微生物和分析实验室的分析,同时优化了水系统现有的处理技术(Southard et al. 2016)。为此,实验室使用分析方法来确定何时需要改变治理方法,以及在T&O事件平息之前将测试重 点放在哪里。


监控T&O问题

应该在T&O事件期间进行底栖和浮游蓝藻的监测,因为这两类蓝藻在生长和衰老过程中都会产生T&O化合物。然而,T&O化合物的化学成分很复杂,它们产生的问题可能是主观的,这使得其检测困难,特别是在痕量水平(Burlingame & Doty 2018)。


水中检测的阈值水平跨越几个数量级,取决于化合物的类型。T&O化合物被分为四种味觉类别和八种气味类别(图1)。该描述大致反映了化学成分,这有助于解释为什么某些处理方法对特定气味组更有效(Mallevaille & Suffet 1987)。定量测量总是对分析物的合理估计,但涉及到某种程度的不确定性,因此必须使用最 高纯度的标准来确保定量精度(Taylor 1987)。


水系统中最普遍和最 具问题的化合物类别是泥土/发霉/发霉类,包括土臭素、2-甲基异龙胆醇(MIB)、吡嗪和卤代苯甲醚。草/干草/稻草/木质类包括酯类、醇类和芳香的异胡萝卜素类等半化学物质。腥臭类由醛和胺组成,它们是由具有高细胞多不饱和脂肪酸的分类植物产生的。在正常条件下,蓝藻很少产生沼泽/沼泽/化粪池/硫磺类化合 物,但它们是hab和其他有机物质厌氧分解产生的主要成分。

640 (6).png

图1


药物/酚类气味通常被描述为杀虫剂、除草剂和消毒剂。芳香/蔬菜/水果/花卉类化合物通常不是讨厌的化合物,但可能是消毒副产物(DBPs)。由臭氧氧化产生。化学/碳氢化合物类别还包括通常不在地表水中发现的化合物,但它们可能由于泄漏或污水的引入而存在。与前一类一样,氯/漂白类包括通常不在地表水中发现的化合物。这一类由在地表水处理中用作消毒剂的成分组成,如游离氯、一氯胺和二氯胺。


多参数反演

多参数探测仪在现场用于远程部署或离线采样。探头可定制,可互换探头,允许检测以下重要的HAB相关参数:

水温:温度可以与季节、空间,时间的和藻华情况密切相关,并可以作为湖泊层理的早期指标。

溶解氧(DO):随着藻华的生长,光合活性增加,DO可以迅速增加;随之而来的是随着生长阶段的结束和藻华凋亡,DO会迅速消耗。

pH值:随着溶解氧水平的下降,pH值的增加可以表明藻华生长;随着藻华的生长,增加的光合作用活动消耗溶解的二氧化碳比细胞呼吸产生的二氧化碳更快。

叶绿素和藻蓝蛋白浓度:基于荧光的色素检测可以揭示浓度,从而估计藻类和蓝藻的丰度,因为叶绿素a在两种生物中都存在,但藻蓝蛋白只在蓝藻中存在。


DO和pH值的日变化与藻华或其他生物活动的程度有关。例如,日周期中,光合作用与细胞呼吸的差异,其中变化越大对应的生物活性越强(Smith 2019)。


640 (24).jpg


流式成像显微镜(FlowCam)

半自动,流动成像显微镜可以提供快速成像,识别和枚举蓝藻和有害的藻类。水系统很少需要或工作人员为处理决定的目的进行物种级别的识别。属级或官能团鉴定提供了处理样品的实用方法。虽然没有任何东西可以完全取代传统的显微鉴别方法,但这是一个非常有效的工具。样品处理时间不到10分钟,蓝藻、硅藻和藻类在色素激发的基础上自动分类。数字图像与以逗号分隔的数值报告一起保存,包括生物的数量、浓度和大小,使技术人员能够快速发现已知的问题生物。建立图像识别参数,使仪器和软件能够自动对关注的微观图像进行排序和分类,可能需要时间,但这个过程相对简单。所获结果是可操作的数据,由可重复的、可扩展的和用户友好的方法支持,这有助于面临人员流动或有限显微镜和分类技能集的公用事业公司。


分子检测

声波探测仪可以追踪分析物的浓度水平,流动成像显微镜可以确定细胞数量,而基于分子的分析可以测量样本中生物的遗传信息。基于分子的技术可以测量所有蓝藻中的16S rRNA基因,通过定量聚合酶链式反应(qPCR)定量测量基因副本的数量。细胞计数和基因拷贝数之间没有确定的相关性,但两者的波动都表明了藻华的大小和生长范围(McKindles et al. 2013)。测定法也可用于氰化毒素产生基因的测定,并正在进行绘制t&o产生途径的工作。技术人员可以通过基因检测在数小时内确定是否存在青藻细菌,并评估毒素或T&O问题的风险。


  流式颗粒成像分析系统  

640 (25).jpg

自1999年问世以来,FlowCam®已经成为分析海洋和淡水样品的一种有价值的仪器。 在50多个国家有超过1000台FlowCam被用来来识别、计数和测量浮游植物、浮游动物和其他颗粒物。


流式颗粒成像分析系统

FlowCam®8400(cyano)

性能优势

• 测量范围:3 μm ~ 1+ mm

• 识别、计数和测量浮游植物和浮游动物

• 高速样品处理:可在6分钟内处理1毫升样品

• VisualSpreadsheet®软件通过测量40+种形态学参数对颗粒图像进行分析,包括生物体积,颜色,形状和大小,并且分类类群  

• FlowCam内集成淡水藻类图片库,可用于自动识别  

• 数据库驱动软件可以满足在多个数据集之间进行时间排序和趋势分析的应用


动态成像颗粒分析系统具有行业领先成像质量和自动识别统计的软件,是检测,表征和定量各种油气行业应用的有效工具。


FlowCam®8100

主要功能:

• 自动清洗和循环清洁功能能够有效避免交叉污染

• 标准分析效率 = 250 µl/min

• 可以选择配置FlowCam自动液体处理系统(ALH)

• VISUALSPREADSHEET软件

• 根据您设定的条件对颗粒数据进行分类和筛选。

• 使用复杂图形识别软件对所有相似颗粒进行分组

• 通过创建和保存用户自定义的颗粒类型数据库就可以实现自动分类和统计分析

• 即时计算汇总总计和生成交互图表


更多新闻资讯