解决方案

Ecodrone®一体式高光谱-激光雷达无人机遥感系统——森林碳循环研究及应用

在陆地生态系统中,森林是 大的有机碳库,是陆地中重要的碳汇和碳源,因此了解森林生态系统在碳循环中的作用,对于研究陆气系统的碳循环乃全 球碳循环都是一个基础,具有重要的意义。易科泰光谱成像与无人机遥感技术研究中心 新推出Ecodrone®一体式高光谱-激光雷达无人机遥感系统,助力森林碳循环研究及应用。


性能特点:


1.png


案例一:森林碳库分布研究

森林地上生物量(AGB)的估算对于碳循环建模和气候变化缓解方案的制定关重要。来自意大利、美国和英国的研究人员将主动和被动传感器结合,其中被动型高光谱数据记录了潜在与森林生物量相关的冠层光谱信息,并将这些信息与主动型小型激光雷达获取的参数相结合,实现了在不同尺度上对森林生态系统的有机碳分布进行遥感计算。


研究区域位于塞拉利昂的戈拉雨林公园 (GRNP) 内,处于西非潮湿的上几内亚森林带的西端,该地区的森林主要为湿润低地常绿林,部分地区主要为干燥低地常绿和半落叶林类型。


2.png


图1.1 位于塞拉利昂和利比里亚之间的研究区域


研究人员采用偏 小二乘回归(PLSR)处理多输入和多重共线性问题,计算投影中的重要性变量(VIP),以评价各预测因子对生物量的重要性。结果表明,当单独使用高光谱波段时,其预测能力有限(R2 =0.36),用植被指数替代高光谱波段的改善较小(R2 =0.67),仅基于激光雷达指标,PLS预测AGB的决定系数(R2)为0.64,当再将高光谱波段添加到激光雷达度量中,精度得到了适度的提高(R2 =0.70)。


3.png


图1.2 (左)不同输入的预测与现场观测AGB的散点图:(A)激光雷达指标,(B)高光谱波段,(C)激光雷达指标和 VI,(D)激光雷达指标和高光谱波段;(右)7个高度等级,每个等级间隔10m的70个样地(总面积= 87500m2)范围的AGB和树木数量


森林是碳的主要吸收者,它所固定的碳相当于其他植被类型的2倍,本研究中提出的高光谱和激光雷达数据融合相关的发现非常具有意义,有助于扩大该系统数据融合适用性的研究,进而对全 球气候变化研究做出更重要的贡献。


案例二:森林碳汇定量评估比较


森林地上生物量生物量是影响气候变化和森林生产力的重要因素,因此评估森林对碳汇和碳循环的贡献程度具有重要的意义。韩国科研人员借助高精度激光雷达数据、数字航空摄影测量图像、高光谱图像等空间信息,对森林碳汇信息进行定量评估。


研究区位于韩国庆尚南道巨济市,该区域森林密度相对较低,树种多样,森林资源丰富,选取研究区内2km*2km的区域进行数据采集。基于高光谱数据中每个树种的光谱信息,使用马氏距离法对树种进行精确分类,基于高密度的LiDAR数据提取森林资源。


4.png

图2.1 从左右依次为:研究区;激光雷达数据;高光谱图像


5.png

图2.2 (左)树种分类结果;(右)利用高密度激光雷达数据提取地理和森林资源的结果


将激光雷达与数字航拍图像、高光谱图像相结合计算了混交林、针叶林和阔叶林的碳汇,同时通过对森林资源的树种和年龄信息进行量化,借助激光雷达和数字图像信息对树种、年份、区域的碳汇进行计算。利用激光雷达信息和图像分析的基础数据库,对选定的区域、行政区、年份进行森林信息和碳汇评估分析,实现了精确地碳汇信息提取,结果如2.3/2.4所示。


6.png


图2.3 多传感器结合的混交林、针叶林和阔叶林的碳汇估算结果


7.png


图2.4 基于激光雷达和图像信息的森林信息和碳汇评估,从左右:第 一行(激光雷达数据;DSM;DEM;树高信息);第二行(树种信息图;增长量分析图;碳吸收分布图;土地覆盖图)


易科泰生态技术公司致力于生态-农业-健康研究发展与创新应用,为碳源碳汇定量评估、植被资源调查、生态环境监测、森林遥感研究、林木表型分析、林业测绘等领域提供一体化多传感器立体遥感技术方案。


8.png


参考文献:

[1] Laurin G V, Chen Q, Lindsell J A, et al. Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89: 49-58.

[2] Choi B G, Na Y W, Shin Y S. A Comparative Study of Carbon Absorption Measurement Using Hyperspectral Image and High Density LiDAR Data in Geojedo[J]. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 2017, 35(4): 231-240.


相关仪器
您可能感兴趣的解决方案